ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 121]      



Задача 65343

Темы:   [ Дискретное распределение ]
[ Средние величины ]
[ Условная вероятность ]
[ Произведения и факториалы ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4+
Классы: 9,10,11

На сушке в случайном порядке (как достали из стиральной машины) висит n пар носков. Двух одинаковых пар нет. Носки висят за сохнущей простыней, поэтому Рассеянный Учёный достает по одному носку на ощупь и сравнивает каждый новый носок со всеми предыдущими. Найдите математическое ожидание числа носков, снятых к моменту, когда у Учёного окажется какая-нибудь пара.

Прислать комментарий     Решение

Задача 66088

Темы:   [ Теория графов (прочее) ]
[ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
[ Произведения и факториалы ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

Автор: Фольклор

В Чикаго орудует 36 преступных банд, некоторые из которых враждуют между собой. Каждый гангстер состоит в нескольких бандах, причём каждые два гангстера состоят в разных наборах банд. Известно, что ни один гангстер не состоит в двух бандах, враждующих между собой. Кроме того, оказалось, что каждая банда, в которой не состоит некоторый гангстер, враждует с какой-то бандой, в которой данный гангстер состоит. Какое наибольшее количество гангстеров может быть в Чикаго?

Прислать комментарий     Решение

Задача 66122

Темы:   [ Теория графов (прочее) ]
[ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
[ Произведения и факториалы ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

Автор: Фольклор

В Чикаго живут 36 гангстеров, некоторые из которых враждуют между собой. Каждый гангстер состоит в нескольких бандах, причём нет двух банд с совпадающим составом. Оказалось, что гангстеры, состоящие в одной банде, не враждуют, но если гангстер не состоит в какой-то банде, то он враждует хотя бы с одним её участником. Какое наибольшее число банд могло быть в Чикаго?

Прислать комментарий     Решение

Задача 60754

Темы:   [ Уравнения в целых числах ]
[ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
[ Произведения и факториалы ]
Сложность: 5
Классы: 10,11

Докажите, что для простого числа p вида  4k + 1  числа x = ± (2k)!  являются решениями сравнения  x² + 1 ≡ 0 (mod p).

Прислать комментарий     Решение

Задача 65341

Темы:   [ Дискретное распределение ]
[ Условная вероятность ]
[ Средние величины ]
[ Треугольник Паскаля и бином Ньютона ]
[ Произведения и факториалы ]
Сложность: 4-
Классы: 9,10,11

Вася купил n пар одинаковых носков. В течение n дней Вася не знал проблем: каждое утро брал из шкафа новую пару и носил её целый день. Через n дней Васина мама постирала все носки в стиральной машине и разложила их по парам, как получилось, поскольку, повторим, носки одинаковые. Назовём пару носков удачной, если оба носка в этой паре были на Васе в один и тот же день.
  а) Найти вероятность того, что все получившиеся пары удачные.
  б) Доказать, что матожидание числа удачных пар больше 0,5.

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 121]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .