ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 98]      



Задача 64856

Темы:   [ Шестиугольники ]
[ Векторы помогают решить задачу ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 9,10,11

На столе лежал проволочный треугольник с углами x°, y°, z°. Хулиган Коля согнул каждую сторону треугольника на один градус, в результате чего получился невыпуклый шестиугольник c внутренними углами  (x – 1)°,  181°,  (y – 1)°,  181°, (z – 1)°,  181°.  Докажите, что точки сгиба делили стороны исходного треугольника в одном и том же отношении.

Прислать комментарий     Решение

Задача 66097

Темы:   [ Перпендикулярные прямые ]
[ Векторы помогают решить задачу ]
[ Поворотная гомотетия (прочее) ]
Сложность: 4
Классы: 9,10,11

Внутри треугольника ABC взята такая точка D, что  BD = CD,  ∠BDC = 120°.  Вне треугольника ABC взята такая точка E, что  AE = CE,  ∠AEC = 60°  и точки B и E находятся в разных полуплоскостях относительно AC. Докажите, что  ∠AFD = 90°,  где F – середина отрезка BE.

Прислать комментарий     Решение

Задача 78017

Темы:   [ Геометрические неравенства ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 9,10,11

Даны четыре прямые m1, m2, m3, m4, пересекающиеся в одной точке O. Через произвольную точку A1 прямой m1 проводим прямую, параллельную прямой m4, до пересечения с прямой m2 в точке A2, через A2 проводим прямую, параллельную m1, до пересечения с m3 в точке A3, через A3 проводим прямую, параллельную m2, до пересечения с m4 в точке A4 и через точку A4 проводим прямую, параллельную m3, до пересечения с m1 в точке B. Доказать, что OB$ \le$$ {\frac{OA_1}{4}}$ (см. рис.).
Прислать комментарий     Решение


Задача 79360

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Векторы помогают решить задачу ]
[ Наименьший или наибольший угол ]
[ Скалярное произведение. Соотношения ]
Сложность: 4
Классы: 11

Дано 8 действительных чисел: a, b, c, d, e, f, g, h. Доказать, что хотя бы одно из шести чисел  ac + bd,  ae + bf,  ag + bh,  ce + df,  cg + dh,  eg + fh  неотрицательно.

Прислать комментарий     Решение

Задача 115595

Темы:   [ Неравенства с медианами ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 8,9

Сумма расстояний между серединами противоположных сторон четырёхугольника равна его полупериметру. Докажите, что этот четырёхугольник — параллелограмм.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 98]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .