ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 47]      



Задача 65244

Темы:   [ Ориентированные графы ]
[ Отношение порядка ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 9,10,11

На соревнованиях по фигурному велосипедированию было 100 судей. Каждый судья упорядочил всех участников (от лучшего по его мнению – к худшему). Оказалось, что ни для каких трёх участников A, B, C не нашлось трёх судей, один из которых считает, что A – лучший из трёх, а B – худший, другой – что B лучший, а C худший, а третий – что C лучший, а A худший. Докажите, что можно составить общий рейтинг участников так, чтобы для каждых двух участников A и B тот, кто выше в рейтинге, был бы лучше другого по мнению хотя бы половины судей.

Прислать комментарий     Решение

Задача 98131

Темы:   [ Взвешивания ]
[ Отношение порядка ]
[ Метод спуска ]
Сложность: 4
Классы: 8,9

Автор: Анджанс А.

Имеется 50 серебряных монет, упорядоченных по весу, и 51 золотая монета, они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за семь взвешиваний найти монету, занимающую среди всех монет 51-е место?

Прислать комментарий     Решение

Задача 98016

Темы:   [ Принцип Дирихле (прочее) ]
[ Отношение порядка ]
[ Целочисленные решетки (прочее) ]
Сложность: 4+
Классы: 8,9,10

Дан 101 прямоугольник с целыми сторонами, не превышающими 100.
Докажите, что среди них найдутся три прямоугольника A, B, C, которые можно поместить друг в друга (так что  ABC).

Прислать комментарий     Решение

Задача 105167

Темы:   [ Турниры и турнирные таблицы ]
[ Отношение порядка ]
[ Исследование квадратного трехчлена ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 4+
Классы: 9,10,11

На берегу круглого острова Гдетотам расположено 20 деревень, в каждой живёт по 20 борцов. Был проведён турнир, в котором каждый борец встретился со всеми борцами из всех других деревень. Деревня А считается сильнее деревни Б, если хотя бы k поединков между борцами из этих деревень заканчивается победой борца из деревни А. Выяснилось, что каждая деревня сильнее следующей за ней по часовой стрелке. Какое наибольшее значение может иметь k? (У всех борцов разная сила, и в поединке всегда побеждает сильнейший.)

Прислать комментарий     Решение

Задача 61423

Темы:   [ Алгебраические неравенства (прочее) ]
[ Симметрические многочлены ]
[ Отношение порядка ]
Сложность: 3+
Классы: 9,10,11

Пусть  Tα(x, y, z) ≥ Tβ(x, y, z)  для всех неотрицательных x, y, z. Докажите, что  

Определение многочленов Tα смотри в задаче 61417, про показатели смотри в справочнике.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 47]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .