ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Даны два натуральных числа a и b, не равные нулю одновременно. Вычислить НОД(a,b) — наибольший общий делитель а и b.

Вниз   Решение


В треугольнике ABC сторона BC равна полусумме двух других сторон. Доказать, что биссектриса угла A перпендикулярна отрезку, соединяющему центры вписанной и описанной окружностей треугольника.

ВверхВниз   Решение


Пусть AA1, BB1, CC1 – высоты остроугольного треугольника ABC, OA, OB, OC – центры вписанных окружностей треугольников AB1C1, BC1A1, CA1B1 соответственно; TA, TB, TC – точки касания вписанной окружности треугольника ABC со сторонами BC, CA, AB соответственно. Докажите, что все стороны шестиугольника TAOCTBOATCOB равны.

ВверхВниз   Решение


Докажите, что любая диагональ четырёхугольника меньше половины его периметра.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 264]      



Задача 109344

Темы:   [ Параллельное проектирование ]
[ Параллелепипеды ]
Сложность: 3
Классы: 10,11

В параллелепипеде ABCDA1B1C1D1 проведён отрезок, соединяющий вершину A с серединой ребра CC1 . В каком отношении этот отрезок делится плоскостью BDA1 ?
Прислать комментарий     Решение


Задача 109345

Темы:   [ Ортогональная проекция (прочее) ]
[ Цилиндр ]
[ Призма (прочее) ]
Сложность: 3
Классы: 10,11

Вершины A и B призмы ABCA1B1C1 лежат на оси цилиндра, а остальные вершины – на боковой поверхности цилиндра. Найдите в этой призме двугранный угол с ребром AB .
Прислать комментарий     Решение


Задача 109346

Темы:   [ Проектирование помогает решить задачу ]
[ Параллелепипеды (прочее) ]
Сложность: 3
Классы: 10,11

В параллелепипеде ABCDA1B1C1D1 на прямых AC и BA1 взяты точки K и M , причём KM || DB1 . Найдите отношение KM:DB1 .
Прислать комментарий     Решение


Задача 109357

Темы:   [ Ортогональная проекция (прочее) ]
[ Четырехугольная пирамида ]
Сложность: 3
Классы: 10,11

Основание четырёхугольной пирамиды PABCD – параллелограмм ABCD , M – основание перпендикуляра, опущенного из точки A на BD . Известно, что BP = DP . Докажите, что расстояние от точки M до середины ребра AP равно половине ребра CP .
Прислать комментарий     Решение


Задача 109368

Темы:   [ Подобие ]
[ Объем призмы ]
Сложность: 3
Классы: 10,11

Высота пирамиды равна 3, площадь основания равна 9. Найдите объём призмы, одно основание которой принадлежит основанию пирамиды, а противоположное основание является сечением пирамиды плоскостью, проходящей на расстоянии 1 от вершины.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 264]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .