ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 49]      



Задача 61388

 [Неравенство Коробова]
Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 4-
Классы: 9,10,11

Докажите, что при  a1a2 ≥ ... ≥ an ≥ 0  выполняется неравенство  

Прислать комментарий     Решение

Задача 65182

Темы:   [ Уравнения в целых числах ]
[ Формулы сокращенного умножения (прочее) ]
[ Перебор случаев ]
Сложность: 4-
Классы: 9,10,11

Решите в целых числах уравнение  (x² – y²)² = 16y + 1.

Прислать комментарий     Решение

Задача 60870

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 4
Классы: 8,9,10

Избавьтесь от иррациональности в знаменателе:

а) ;     д) ;
б) ;     е) ;
в) ;     ж) .
г) ;  

Прислать комментарий     Решение

Задача 109878

Темы:   [ Числовые таблицы и их свойства ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 4
Классы: 7,8,9

Можно ли в таблице 11×11 расставить натуральные числа от 1 до 121 так, чтобы числа, отличающиеся друг от друга на единицу, располагались в клетках с общей стороной, а все точные квадраты попали в один столбец?

Прислать комментарий     Решение

Задача 65196

Темы:   [ Целочисленные и целозначные многочлены ]
[ Формулы сокращенного умножения (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 9,10,11

Существуют ли такие два многочлена с целыми коэффициентами, что у каждого из них есть коэффициент, модуль которого больше 2015, но у произведения этих двух многочленов модули всех коэффициентов не превосходят 1?
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .