ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 201]      



Задача 64992

Темы:   [ Турниры и турнирные таблицы ]
[ Инварианты ]
Сложность: 3
Классы: 7,8,9

По окончании шахматного турнира Незнайка сказал: "Я набрал на 3,5 очка больше, чем потерял". Могут ли его слова быть правдой?
(Победа – 1 очко, ничья – ½ очка, поражение – 0.)

Прислать комментарий     Решение

Задача 67067

Темы:   [ Признаки делимости на 5 и 10 ]
[ Инварианты ]
Сложность: 3
Классы: 8,9,10,11

Натуральное число умножили на 5, результат снова умножили на 5 и так далее, всего сделали $k$ умножений. Оказалось, что в десятичной записи исходного числа и полученных $k$ чисел нет
цифры 7. Докажите, что существует натуральное число, которое можно $k$ раз умножить на 2, и снова ни в одном числе не будет цифры 7 в его десятичной записи.

Прислать комментарий     Решение

Задача 67476

Темы:   [ Процессы и операции ]
[ Инварианты ]
Сложность: 3
Классы: 7,8,9,10,11

В ряд лежат 100 камней: чёрный, белый, чёрный, белый, ..., чёрный, белый. Одной операцией либо выбирают два чёрных камня, между которыми лежат только белые камни, и перекрашивают все эти белые камни в чёрный цвет, либо выбирают два белых камня, между которыми лежат только чёрные камни, и перекрашивают все эти чёрные камни в белый цвет. Можно ли за несколько таких операций получить ряд, в котором идут сначала 50 чёрных камней, а потом 50 белых?
Прислать комментарий     Решение


Задача 88187

Темы:   [ Числовые таблицы и их свойства ]
[ Инварианты ]
Сложность: 3
Классы: 6,7,8

На клетке b8 шахматной доски написано число –1, а на всех остальных клетках число 1. Разрешается одновременно менять знак во всех клетках одной вертикали или одной горизонтали. Докажите, что сколько бы раз мы это ни проделывали, невозможно добиться, чтобы все числа в таблице стали положительными.

Прислать комментарий     Решение

Задача 97931

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Инварианты ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3
Классы: 7,8,9

Автор: Брискин Я.

В левый нижний угол шахматной доски 8×8 поставлено в форме квадрата 3×3 девять фишек. Фишка может прыгать на свободное поле через рядом стоящую фишку, то есть симметрично отражаться относительно её центра (прыгать можно по вертикали, горизонтали и диагонали). Можно ли за некоторое количество таких ходов поставить все фишки вновь в форме квадрата 3×3, но в другом углу:
  а) левом верхнем,
  б) правом верхнем?

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 201]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .