Страница:
<< 11 12 13 14 15
16 17 >> [Всего задач: 85]
|
|
|
Сложность: 4 Классы: 9,10,11
|
Даны прямоугольный треугольник ABC и две взаимно перпендикулярные прямые x и y, проходящие через вершину прямого угла A. Для точки X, движущейся по прямой x, определим yb как образ прямой y при симметрии относительно XB, а yc – как образ прямой y при симметрии относительно XC. Пусть yb и yс пересекаются в точке Y. Найдите геометрическое место точек Y (для несовпадающих yb и yс).
|
|
|
Сложность: 4 Классы: 8,9,10
|
Имеется треугольник ABC. На луче BA отложим точку A1, так что отрезок BA1 равен BC. На луче CA отложим точку A2, так что отрезок C2 равен BC. Аналогично построим точки B1, B2 и C1, C2. Докажите, что прямые A1A2, B1B 2, C1C2 параллельны.
|
|
|
Сложность: 4+ Классы: 8,9,10
|
Квадрат
ABCD вращается вокруг своего неподвижного
центра. Найдите геометрическое место середин отрезков
PQ, где
P — основание перпендикуляра, опущенного из точки
D на неподвижную
прямую
l, а
Q — середина стороны
AB.
|
|
|
Сложность: 4- Классы: 9,10
|
Внутри вписанного четырёхугольника ABCD существует точка K, расстояния от которой до сторон ABCD пропорциональны этим сторонам.
Доказать, что K – точка пересечения диагоналей ABCD.
Отрезок AB пересекает две равные окружности и параллелен их линии центров, причём все точки пересечения прямой AB с окружностями лежат между A и B. Через точку A проводятся касательные к окружности, ближайшей к A, через точку B – касательные к окружности, ближайшей к B. Оказалось, что эти четыре касательные образуют четырёхугольник, содержащий внутри себя обе окружности. Докажите, что в этот четырёхугольник можно вписать окружность.
Страница:
<< 11 12 13 14 15
16 17 >> [Всего задач: 85]