ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 [Всего задач: 17]      



Задача 64350

Темы:   [ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Вспомогательные равные треугольники ]
[ Радикальная ось ]
[ Поворотная гомотетия (прочее) ]
Сложность: 4+
Классы: 9,10

На сторонах остроугольного треугольника ABC вне него построены квадраты CAKL и CBMN. Прямая CN пересекает отрезок AK в точке X, а прямая CL пересекает отрезок BM в точке Y. Точка P, лежащая внутри треугольника ABC, является точкой пересечения описанных окружностей треугольников KXN и LYM. Точка S – середина отрезка AB. Докажите, что  ∠ACS = ∠BCP.

Прислать комментарий     Решение

Задача 111687

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательная окружность ]
[ Биссектриса делит дугу пополам ]
[ Гомотетия помогает решить задачу ]
[ Поворотная гомотетия (прочее) ]
Сложность: 4+
Классы: 8,9,10

На сторонах AC и BC неравнобедренного треугольника ABC во внешнюю сторону построены как на основаниях равнобедренные треугольники AB'C и CA'B с одинаковыми углами при основаниях, равными φ. Перпендикуляр, проведённый из вершины C к отрезку A'B', пересекает серединный перпендикуляр к отрезку AB в точке C1. Найдите угол AC1B.

Прислать комментарий     Решение

Страница: << 1 2 3 4 [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .