ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



Задача 64776

Темы:   [ Гомотетичные многоугольники ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 5-
Классы: 9,10,11

На плоскости дано n выпуклых попарно пересекающихся k-угольников. Каждый из них можно перевести в любой другой гомотетией с положительным коэффициентом. Докажите, что на плоскости найдётся точка, принадлежащая хотя бы     из этих k-угольников.

Прислать комментарий     Решение

Задача 57987

Темы:   [ Гомотетичные многоугольники ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Выпуклые многоугольники ]
[ Подобные фигуры ]
Сложность: 5
Классы: 9,10,11

Докажите, что любой выпуклый многоугольник $ \Phi$ содержит два непересекающихся многоугольника $ \Phi_{1}^{}$ и $ \Phi_{2}^{}$, подобных $ \Phi$ с коэффициентом 1/2.
Прислать комментарий     Решение


Задача 78524

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Гомотетичные многоугольники ]
[ Симметрия помогает решить задачу ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 9,10

В четырёхугольнике ABCD опущены перпендикуляры AM и CP на диагональ BD, а также BN и DQ на диагональ AC.
Доказать, что четырёхугольники ABCD и MNPQ подобны.

Прислать комментарий     Решение

Задача 57156

Темы:   [ Гомотетия: построения и геометрические места точек ]
[ Гомотетичные многоугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Неравенства с площадями ]
Сложность: 4
Классы: 9,10

Дан треугольник ABC. Найдите множество центров прямоугольников PQRS, вершины Q и P которых лежат на стороне AC, вершины R и S — на сторонах AB и BC соответственно.
Прислать комментарий     Решение


Задача 37005

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Гомотетичные многоугольники ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 4+
Классы: 10,11

Трапеция АВСD с основаниями AB и CD вписана в окружность. Докажите, что четырёхугольник, образованный ортогональными проекциями любой точки этой окружности на прямые AC, BC, AD и BD, является вписанным.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .