Страница:
<< 1 2 3 4 5 [Всего задач: 23]
|
|
|
Сложность: 5+ Классы: 8,9,10
|
Треугольник
T содержится внутри выпуклого центрально-симметричного
многоугольника
M .
Треугольник
T' получается из треугольника
T
центральной симметрией относительно некоторой точки
P , лежащей внутри треугольника
T .
Докажите, что хотя бы одна из вершин треугольника
T' лежит
внутри или на границе многоугольника
M .
|
|
|
Сложность: 5- Классы: 9,10,11
|
Четырёхугольник ABCD является одновременно и вписанным, и описанным, причём вписанная в ABCD окружность касается его сторон AB, BC, CD и AD в точках K, L, M, N соответственно. Биссектрисы внешних углов A и B четырёхугольника пересекаются в точке K', внешних углов B и C – в точке L', внешних углов C и D – в точке M', внешних углов D и A – в точке N'. Докажите, что прямые KK', LL', MM' и NN' проходят через одну точку.
Проекции точки X на стороны четырёхугольника ABCD лежат на одной окружности. Y – точка, симметричная X относительно центра этой окружности. Докажите, что проекции точки B на прямые AX, XC, CY, YA также лежат на одной окружности.
Страница:
<< 1 2 3 4 5 [Всего задач: 23]