ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 [Всего задач: 50]      



Задача 78026

Темы:   [ Поворот помогает решить задачу ]
[ ГМТ и вписанный угол ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 8,9

Дан равносторонний $ \Delta$ABC. На сторонах AB и BC взяты точки D и E так, что AE = CD. Найти геометрическое место точек пересечения отрезков AE и CD.
Прислать комментарий     Решение


Задача 108044

Темы:   [ Поворот помогает решить задачу ]
[ Правильные многоугольники ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
[ Правильный (равносторонний) треугольник ]
[ Шестиугольники ]
Сложность: 4
Классы: 8,9

Вершины правильного треугольника расположены на сторонах AB, CD и EF правильного шестиугольника ABCDEF.
Докажите, что эти треугольник и шестиугольник имеют общий центр.

Прислать комментарий     Решение

Задача 55553

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Поворот помогает решить задачу ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 8,9

Точки M и N на сторонах BC и AB равностороннего треугольника ABC выбраны так, что площадь треугольника AKC равна площади четырёхугольника BMKN (K — точка пересечения отрезков AM и CN). Найдите угол AKC.

Прислать комментарий     Решение


Задача 73637

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Правильный (равносторонний) треугольник ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
[ Метод ГМТ ]
[ Системы точек ]
Сложность: 6
Классы: 8,9,10,11

Автор: Гурари В.

Множество, состоящее из конечного числа точек плоскости, обладает следующим свойством: для любых двух его точек A и B существует такая точка С этого множества, что треугольник ABC равносторонний. Сколько точек может содержать такое множество?
Прислать комментарий     Решение


Задача 64829

Темы:   [ Четырехугольники (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
[ Поворот помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10

В выпуклом четырёхугольнике ABCD  ∠A = ∠В = 60°  и  ∠СAВ = ∠CBD.  Докажите, что  AD + CB = AB.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .