ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 102]      



Задача 54915

Темы:   [ Площадь четырехугольника ]
[ Теорема косинусов ]
[ Описанные четырехугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 4+
Классы: 8,9

Стороны четырёхугольника равны a, b, c и d. Известно, что в этот четырёхугольник можно вписать окружность и около него можно описать окружность. Докажите, что его площадь равна $ \sqrt{abcd}$.

Прислать комментарий     Решение


Задача 55104

Темы:   [ Площадь четырехугольника ]
[ Средняя линия треугольника ]
Сложность: 4+
Классы: 8,9

Через середину каждой диагонали выпуклого четырёхугольника проведена прямая, параллельная другой диагонали; точка пересечения этих прямых соединена с серединами сторон четырёхугольника. Докажите, что четырёхугольник разбивается таким образом на четыре равновеликие части.

Прислать комментарий     Решение


Задача 55138

Темы:   [ Площадь четырехугольника ]
[ Средняя линия треугольника ]
Сложность: 4+
Классы: 8,9

Автор: Старк М.В.

На сторонах AB и CD выпуклого четырёхугольника ABCD выбираются произвольные точки E и F соответственно. Докажите, что середины отрезков AF, BF, CE и DE являются вершинами выпуклого четырёхугольника, причём его площадь не зависит от выбора точек E и F.

Прислать комментарий     Решение


Задача 56766

Тема:   [ Площадь четырехугольника ]
Сложность: 5
Классы: 9

Диагонали четырехугольника ABCD пересекаются в точке P, причем  SABP2 + SCDP2 = SBCP2 + SADP2. Докажите, что P — середина одной из диагоналей.
Прислать комментарий     Решение


Задача 56767

Тема:   [ Площадь четырехугольника ]
Сложность: 5
Классы: 9

В выпуклом четырехугольнике ABCD существуют три внутренние точки  P1, P2, P3, не лежащие на одной прямой и обладающие тем свойством, что сумма площадей треугольников ABPi и CDPi равна сумме площадей треугольников BCPi и ADPi для i = 1, 2, 3. Докажите, что ABCD — параллелограмм.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 102]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .