ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 1394]      



Задача 64505

Тема:   [ Площадь параллелограмма ]
Сложность: 3
Классы: 6,7

Высота комнаты 3 метра. При её ремонте выяснилось, что на каждую стену уходит краски больше, чем на пол.
Может ли площадь пола этой комнаты быть больше чем 10 квадратных метров?

Прислать комментарий     Решение

Задача 66635

Темы:   [ Вычисление площадей ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 6,7,8,9

Пит М. на квадратном холсте нарисовал композицию из прямоугольников. На рисунке даны площади нескольких прямоугольников, в том числе синего и красного квадратов. Чему равна сумма площадей двух серых прямоугольников?

Прислать комментарий     Решение

Задача 66779

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Четность и нечетность ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Автор: Saghafian M.

Мортеза отметил на плоскости шесть точек и нашел площади всех 20 треугольников с вершинами в этих точках. Может ли оказаться, что все полученные числа целые, а их сумма равна 2019?
Прислать комментарий     Решение


Задача 77976

Темы:   [ Перегруппировка площадей ]
[ Правильные многоугольники ]
Сложность: 3
Классы: 8,9,10,11

A – вершина правильного звёздчатого пятиугольника. Ломаная AA'BB'CC'DD'EE' является его внешним контуром. Прямые AB и DE продолжены до пересечения в точке F. Докажите, что многоугольник ABB'CC'DED' равновелик четырёхугольнику AD'EF.

Прислать комментарий     Решение

Задача 78473

Тема:   [ Площадь четырехугольника ]
Сложность: 3
Классы: 8,9

Даны выпуклый четырёхугольник ABCD площади s и точка M внутри него. Точки P, Q, R, S симметричны точке M относительно середин сторон четырёхугольника ABCD. Найти площадь четырёхугольника PQRS.
Прислать комментарий     Решение


Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 1394]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .