Страница:
<< 8 9 10 11 12 13 14 >> [Всего задач: 182]
Расстояние от точки X до центра правильного n-угольника равно d, r – радиус вписанной окружности n-угольника.
Докажите, что сумма квадратов расстояний от точки X до прямых, содержащих стороны n-угольника, равна n(r² + ½ d²).
Докажите, что сумма квадратов длин проекций сторон правильного n-угольника на любую прямую равна ½ na², где a – сторона n-угольника.
Правильный n-угольник A1...An вписан в окружность радиуса R; X – точка этой окружности. Докажите, что
а) Правильный n-угольник A1...An
вписан в окружность радиуса 1 с центром O; ei =
, u –
произвольный вектор.
Докажите, что
(u, ei)ei = ½ nu.
б) Из произвольной точки X опущены перпендикуляры XC1,..., XCn на стороны правильного n-угольника (или на их продолжения).
Докажите, что
где O – центр n-угольника.
|
|
|
Сложность: 4 Классы: 9,10,11
|
Можно ли отметить k вершин правильного 14-угольника так, что каждый четырёхугольник с вершинами в отмеченных точках, имеющий две параллельные стороны, является прямоугольником, если: а) k = 6; б) k ≥ 7?
Страница:
<< 8 9 10 11 12 13 14 >> [Всего задач: 182]