Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 182]
На сторонах AB, BC, CD и DA квадрата ABCD
построены внутренним образом правильные треугольники ABK, BCL, CDM и DAN. Докажите, что середины сторон этих треугольников (не
являющихся сторонами квадрата) и середины отрезков KL, LM, MN
и NK образуют правильный двенадцатиугольник.
|
|
|
Сложность: 4- Классы: 9,10,11
|
В правильном восемнадцатиугольнике A0...A17 проведены диагонали A0Ap+3, Ap+1A18–r и A1Ap+q+3.
Докажите, что указанные диагонали пересекаются в одной точке в любом из следующих случаев:
а) {p, q, r} = {1, 3, 4},
б) {p, q, r} = {2, 2, 3}.
Правильный n-угольник A1...An вписан в окружность радиуса R с центром O,
ei =
, x =
– произвольный вектор.
Докажите, что Σ (ei, x)² = ½ nR²·OX².
Каждый из двух правильных многоугольников P и Q разрезали прямой на две части. Одну из частей P и одну из частей Q сложили друг с другом по линии разреза. Может ли получиться правильный многоугольник, не равный ни одному из исходных, и если да, то сколько у него может быть сторон?
|
|
|
Сложность: 4- Классы: 9,10,11
|
В правильном 21-угольнике шесть вершин покрашены в красный цвет, а семь вершин – в синий.
Обязательно ли найдутся два равных треугольника, один из которых с красными вершинами, а другой – с синими?
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 182]