ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы каждый телефон был соединён ровно с пятью другими?

Вниз   Решение


В стране Цифра есть 9 городов с названиями 1, 2, 3, 4, 5, 6, 7, 8, 9. Путешественник обнаружил, что два города соединены авиалинией в том и только в том случае, если двузначное число, составленное из цифр-названий этих городов, делится на 3. Можно ли добраться из города 1 в город 9?

ВверхВниз   Решение


Требуется подсчитать количество последовательностей длины N, состоящих из 0 и 1, в которых никакие две единицы не стоят рядом.

Входные данные

Во входном файле записано целое число N (1 ≤ N ≤ 100).

Выходные данные

В выходной файл вывести количество искомых последовательностей.

Пример входного файла

5

Пример выходного файла

13

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 501]      



Задача 108651

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные равные треугольники ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

BD – биссектриса треугольника ABC. Описанная окружность треугольника BDC пересекает отрезок AB в точке E, описанная окружность треугольника ABD пересекает отрезок BC в точке F. Докажите, что  AE = CF.

Прислать комментарий     Решение

Задача 111702

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8,9

Биссектрисы углов A и B треугольника ABC пересекают описанную окружность треугольника в точках A1 и B1 . Вписанная окружность касается сторон AC и BC в точках A2 и B2 . Докажите, что A1B1 || A2B2 .
Прислать комментарий     Решение


Задача 115310

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

ABCD – выпуклый четырёхугольник,  AB = BC  и  AD = DC.  На диагонали AC нашлась такая точка K, что  AK = BK  и четырёхугольник KBCD – вписанный. Докажите, что  BD = CD.

Прислать комментарий     Решение

Задача 115663

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Четыре точки, лежащие на одной окружности ]
[ Вспомогательная окружность ]
Сложность: 3
Классы: 8,9

В выпуклом четырёхугольнике ABCD известно, что BCD = 80o , ACB = 50o и ABD = 30o . Найдите угол ADB .
Прислать комментарий     Решение


Задача 115664

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Четыре точки, лежащие на одной окружности ]
[ Вспомогательная окружность ]
Сложность: 3
Классы: 8,9

В выпуклом четырёхугольнике ABCD известно, что ACB = 25o , ACD = 40o и BAD = 115o . Найдите угол ADB .
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .