ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На окружности имеются синие и красные точки. Разрешается добавить красную точку и поменять цвета её соседей, а также убрать красную точку и изменить цвета её бывших соседей. Пусть первоначально было всего две красные точки (менее двух точек оставлять не разрешается). Доказать, что за несколько разрешённых операций нельзя получить картину, состоящую из двух синих точек.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 501]      



Задача 56544

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 7,8

а) Продолжение биссектрисы угла B треугольника ABC пересекает описанную окружность в точке M; O — центр вписанной окружности, Ob — центр вневписанной окружности, касающейся стороны AC. Докажите, что точки A, C, O и Ob лежат на окружности с центром M.
б) Точка O, лежащая внутри треугольника ABC, обладает тем свойством, что прямые AO, BO и CO проходят через центры описанных окружностей треугольников BCO, ACO и ABO. Докажите, что O — центр вписанной окружности треугольника ABC.
Прислать комментарий     Решение


Задача 56545

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 7,8

Прямоугольный треугольник ABC с прямым углом A движется так, что его вершины B и C скользят по сторонам данного прямого угла. Докажите, что множеством точек A является отрезок и найдите его длину.
Прислать комментарий     Решение


Задача 56546

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 7,8

Диагональ AC квадрата ABCD совпадает с гипотенузой прямоугольного треугольника ACK, причем точки B и K лежат по одну сторону от прямой AC. Докажите, что  BK = | AK - CK|/$ \sqrt{2}$ и  DK = (AK + CK)/$ \sqrt{2}$.
Прислать комментарий     Решение


Задача 56547

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 7,8

В треугольнике ABC проведены медианы AA1 и BB1. Докажите, что если  $ \angle$CAA1 = $ \angle$CBB1, то AC = BC.
Прислать комментарий     Решение


Задача 56549

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Правильные многоугольники ]
Сложность: 3
Классы: 7,8

Окружность разделена на равные дуги n диаметрами. Докажите, что основания перпендикуляров, опущенных из произвольной точки M, лежащей внутри окружности, на эти диаметры, являются вершинами правильного многоугольника.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .