Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 121]
|
|
|
Сложность: 4 Классы: 8,9,10
|
Из клетчатого бумажного квадрата 100×100 вырезали по границам клеток 1950 доминошек (двуклеточных прямоугольников). Докажите, что из оставшейся части можно вырезать по границам клеток четырёхклеточную фигурку вида Т – возможно, повёрнутую. (Если такая фигурка уже есть среди оставшихся частей, считается, что её получилось вырезать.)
|
|
|
Сложность: 4 Классы: 7,8,9,10
|
Доминошки 1×2 кладут без наложений на шахматную доску 8×8. При этом доминошки могут вылезать за границу доски, но центр каждой доминошки должен лежать строго внутри доски (не на границе). Положите таким образом на доску
а) хотя бы 40 доминошек;
б) хотя бы 41 доминошку;
в) более 41 доминошки.
|
|
|
Сложность: 4 Классы: 8,9,10,11
|
На доску $2018\times 2018$ клеток положили без наложений некоторое количество доминошек, каждая из которых закрывает ровно две клетки. Оказалось, что ни у каких двух доминошек нет общей целой стороны, т. е. никакие две не образуют ни квадрат
$2\times 2$, ни прямоугольник $4\times 1$.
Может ли при этом быть покрыто более 99% всех клеток доски?
|
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дано натуральное число $n > 1$. Что больше: количество способов разрезать клетчатый квадрат $3n \times 3n$ на клетчатые прямоугольники $1 \times 3$ или количество способов разрезать клетчатый квадрат $2n \times 2n$ на клетчатые прямоугольники $1 \times 2$?
|
|
|
Сложность: 4 Классы: 8,9,10,11
|
Прямоугольная клетчатая доска покрашена в шахматном порядке в чёрный и белый цвета и разбита на доминошки $1\times 2$. Везде, где граничат по стороне горизонтальная и вертикальная доминошки, стоит дверка. Она покрашена в тот же цвет, что и примыкающая клетка той доминошки, которая примыкает короткой стороной. Обязательно ли белых дверок столько же, сколько чёрных?
Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 121]