Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 295]
На дуге AC описанной окружности правильного треугольника ABC взята точка M, отличная от C, P – середина этой дуги.
Пусть N – середина хорды BM, K – основание перпендикуляра, опущенного из точки P на MC. Докажите, что треугольник ANK правильный.
|
|
|
Сложность: 4- Классы: 7,8,9
|
Дан треугольник ABC с попарно различными сторонами. На его сторонах построены внешним образом правильные треугольники ABC1, BCA1 и CAB1. Докажите, что треугольник
A1B1C1 не может быть правильным.
Точки P1, P2, ..., Pn–1 делят сторону BC равностороннего треугольника ABC на n равных частей: BP1 = P1P2 = ... = Pn–lC. Точка M выбрана на стороне AC так, что AM = BP1.
Докажите, что ∠
AP1M + ∠
AP2M + ... + ∠
APn–1M = 30°, если
а)
n = 3;
б)
n – произвольное натуральное число.
|
|
|
Сложность: 4- Классы: 7,8,9
|
Правильный треугольник разбит на правильные треугольники со стороной 1
линиями, параллельными его сторонам и делящими каждую сторону на n
частей (на рисунке n = 5).
Какое наибольшее число отрезков длины 1 с концами в вершинах этих треугольников можно отметить так, чтобы не нашлось треугольника, все стороны которого состоят из отмеченных отрезков?
|
|
|
Сложность: 4- Классы: 8,9,10,11
|
Пусть O – центр правильного треугольника ABC. Из произвольной точки P плоскости опустили перпендикуляры на стороны треугольника или их продолжения. Обозначим через M точку пересечения медиан треугольника с вершинами в основаниях этих перпендикуляров. Докажите, что M – середина отрезка PO.
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 295]