ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны две последовательности из букв А и Б, в каждой из которых по 100 букв. За одну операцию разрешается вставить в какое-то место последовательности (возможно, в начало или в конец) одну или несколько одинаковых букв или убрать из последовательности одну или несколько подряд идущих одинаковых букв. Докажите, что из первой последовательности можно получить вторую не более чем за 100 операций.

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 78]      



Задача 54656

Тема:   [ Отношения линейных элементов подобных треугольников ]
Сложность: 2+
Классы: 8,9

Докажите, что отношение периметров подобных треугольников равно коэффициенту подобия.

Прислать комментарий     Решение

Задача 76424

Тема:   [ Отношения линейных элементов подобных треугольников ]
Сложность: 2+
Классы: 9

В треугольнике ABC из произвольной точки D на стороне AB проведены две прямые, параллельные сторонам AC и BC, пересекающие BC и AC соответственно в точках F и G. Доказать, что сумма длин описанных окружностей треугольников ADG и BDF равна длине описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 53757

Темы:   [ Отношения линейных элементов подобных треугольников ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

В треугольник, основание которого равно 48, а высота – 16, вписан прямоугольник с отношением сторон  5 : 9,  причём большая сторона лежит на основании треугольника. Найдите стороны прямоугольника.

Прислать комментарий     Решение

Задача 53758

Темы:   [ Отношения линейных элементов подобных треугольников ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

В треугольник, у которого основание равно 30, а высота – 10, вписан прямоугольный равнобедренный треугольник так, что его гипотенуза параллельна основанию данного треугольника, а вершина прямого угла лежит на этом основании. Найдите гипотенузу.

Прислать комментарий     Решение

Задача 52688

Темы:   [ Отношения линейных элементов подобных треугольников ]
[ Две касательные, проведенные из одной точки ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

Периметр треугольника ABC равен 8. В треугольник вписана окружность и к ней проведена касательная, параллельная стороне AB. Отрезок этой касательной, заключённый между сторонами AC и CB, равен 1. Найдите сторону AB.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 78]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .