|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Витя выложил из карточек с цифрами пример на сложение и затем поменял местами две карточки. Как видите, равенство нарушилось. Какие карточки переставил Витя?
Докажите, что если a > b, то ma < mb. Докажите, что предпоследняя цифра любой степени числа 3 чётна. Даны четыре окружности, причем окружности S1 и S3 пересекаются с обеими окружностями S2 и S4. Докажите, что если точки пересечения S1 с S2 и S3 с S4 лежат на одной окружности или прямой, то и точки пересечения S1 с S4 и S2 с S3 лежат на одной окружности или прямой (рис.). |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 78]
В треугольнике ABC на сторонах AB, BC и AC взяты соответственно точки M, K и L так, что прямая MK параллельна прямой AC и ML параллельна BC. При этом отрезок BL пересекает отрезок MK в точке P, а AK пересекает ML в точке Q. Докажите, что отрезки PQ и AB параллельны.
Окружность радиуса 2 проходит через середины трёх сторон треугольника ABC, в котором углы при вершинах A и B равны 30° и 45° соответственно.
Дан треугольник ABC, в котором AB = BC ≠ AC. На стороне AB выбрана точка E, на продолжении стороны AC за точку A выбрана точка D, причём ∠BDC = ∠ECA. Докажите, что площади треугольников DEC и ABC равны.
В данный прямоугольный треугольник вписать прямоугольник наибольшей площади так, чтобы все вершины прямоугольника лежали на сторонах треугольника.
Дан вписанный четырёхугольник ABCD. Противоположные стороны
AB и CD при продолжении пересекаются в точке K, стороны BC и AD – в точке L.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 78] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|