ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 209]      



Задача 111236

Тема:   [ Математическая логика (прочее) ]
Сложность: 3-
Классы: 6,7,8

В городе живут рыцари и лжецы. Рыцари всегда говорят правду, а лжецы всегда лгут. Рыцари носят с собой шпагу, а лжецы– нет. Собрались вместе два рыцаря и два лжеца и посмотрели друг на друга. Кто из них мог сказать фразу: 1) "Cреди нас все рыцари". 2) "Среди вас есть ровно один рыцарь". 3) "Среди вас есть ровно два рыцаря" ? Для каждой фразы укажите всех, кто мог ее сказать, и объясните.
Прислать комментарий     Решение


Задача 116665

Тема:   [ Математическая логика (прочее) ]
Сложность: 3-
Классы: 5,6,7

Автор: Фольклор

Четверо детей сказали друг о друге так.
Маша:  Задачу решили трое: Саша, Наташа и Гриша.
Саша:  Задачу не решили трое: Маша, Наташа и Гриша.
Наташа:  Маша и Саша солгали.
Гриша:  Маша, Саша и Наташа сказали правду.
Сколько детей на самом деле сказали правду?

Прислать комментарий     Решение

Задача 116809

Тема:   [ Математическая логика (прочее) ]
Сложность: 3-
Классы: 6,7

Мартышка, Осёл и Козёл затеяли сыграть трио. Уселись чинно в ряд, Мартышка справа. Ударили в смычки, дерут, а толку нет. Поменялись местами, при этом Осёл оказался в центре. А трио всё нейдёт на лад. Пересели ещё раз. При этом оказалось, что каждый из трёх "музыкантов" успел посидеть и слева, и справа, и в центре. Кто где сидел на третий раз?

Прислать комментарий     Решение

Задача 116817

Темы:   [ Математическая логика (прочее) ]
[ Подсчет двумя способами ]
Сложность: 3-
Классы: 8,9

Про группу из пяти человек известно, что:

   Алеша на 1 год старше Алексеева,
   Боря на 2 года старше Борисова,
   Вася на 3 года старше Васильева,
   Гриша на 4 года старше Григорьева,
   а еще в этой группе есть Дима и Дмитриев.

Кто старше и на сколько: Дима или Дмитриев?

Прислать комментарий     Решение

Задача 35081

Темы:   [ Математическая логика (прочее) ]
[ Индукция (прочее) ]
Сложность: 3
Классы: 8,9,10

Двум гениям сообщили по натуральному числу и сказали, что эти числа отличаются на 1. После этого они по очереди задают друг другу один и тот же вопрос: "Знаешь ли ты мое число?". Докажите, что рано или поздно один из них ответит положительно.

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 209]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .