ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 277]      



Задача 98160

Темы:   [ Теория алгоритмов (прочее) ]
[ Таблицы и турниры (прочее) ]
[ Разложение в произведение транспозиций и циклов ]
Сложность: 4+
Классы: 8,9,10

Автор: Анджанс А.

В таблице m строк, n столбцов. Горизонтальным ходом называется такая перестановка элементов таблицы, при которой каждый элемент остаётся в той строке, в которой он был и до перестановки; аналогично определяется вертикальный ход ("строка" в предыдущем определении заменяется на "столбец"). Укажите такое k, что за k ходов (любых) можно получить любую перестановку элементов таблицы, но существует такая перестановка, которую нельзя получить за меньшее число ходов.

Прислать комментарий     Решение

Задача 98572

Темы:   [ Теория алгоритмов (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 8,9,10

С цепочкой камней домино, сложенной по обычным правилам, разрешается проделывать такую операцию: выбирается кусок из нескольких подряд доминошек с одинаковыми очками на концах куска, переворачивается целиком и вставляется на то же место. Докажите, что если у двух цепочек, сложенных из двух одинаковых комплектов домино, значения очков на концах совпадают, то разрешёнными операциями можно сделать порядок следования доминошек во второй цепочке таким же, как в первой.

Прислать комментарий     Решение

Задача 98603

Темы:   [ Теория алгоритмов (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Внутренность и внешность. Лемма Жордана ]
[ Оценка + пример ]
Сложность: 4+
Классы: 9,10,11

а) Электрическая схема имеет вид решётки 3×3: всего в схеме 16 узлов (вершины квадратиков решётки), которые соединены проводами (стороны квадратиков решётки). Возможно, часть проводов перегорела. За одно измерение можно выбрать любую пару узлов схемы и проверить, проходит ли между ними ток (то есть, проверить, существует ли цепочка неперегоревших проводов, соединяющая эти узлы). В действительности схема такова, что ток проходит от любого узла к любому. За какое наименьшее число измерений всегда можно в этом удостовериться?

б) Тот же вопрос для решётки 7×7 (всего 64 узла).

Прислать комментарий     Решение

Задача 109432

Темы:   [ Теория алгоритмов (прочее) ]
[ Геометрия на клетчатой бумаге ]
Сложность: 4+
Классы: 7,8,9

Буратино ходит по улицам города, на одном из перекрёстков которого зарыт клад. На каждом перекрёстке ему по радио сообщают, приблизился он к кладу или удалился (по сравнению с предыдущим перекрёстком). Радио либо всегда говорит правду, либо всегда лжёт (но Буратино не знает, лжёт оно или нет).
Сможет ли Буратино точно узнать, где закопан клад, если план города имеет вид:
а) ,
б) ?
(Перекрёстки отмечены точками.)
Прислать комментарий     Решение


Задача 109628

Темы:   [ Теория алгоритмов (прочее) ]
[ Четность и нечетность ]
Сложность: 4+
Классы: 8,9,10

Во взводе служат три сержанта и несколько солдат. Сержанты по очереди дежурят по взводу. Командир издал такой приказ.
  1. За каждое дежурство должен быть дан хотя бы один наряд вне очереди.
  2. Никакой солдат не должен иметь более двух нарядов и получать более одного наряда за одно дежурство.
  3. Списки получивших наряды ни за какие два дежурства не должны совпадать.
  4. Сержант, первым нарушивший одно из изложенных выше правил, наказывается гауптвахтой.
Сможет ли хотя бы один из сержантов, не сговариваясь с другими, давать наряды так, чтобы не попасть на гауптвахту?

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 277]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .