Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 277]
|
|
|
Сложность: 4+ Классы: 10,11
|
Банк обслуживает миллион клиентов, список которых известен Остапу Бендеру.
У каждого есть свой PIN-код из шести цифр, у разных клиентов коды разные. Остап Бендер за один ход может выбрать любого клиента, которого он еще не выбирал, и подсмотреть у него цифры кода на любых N позициях (у разных клиентов он может выбирать разные позиции). Остап хочет узнать код миллионера Корейко. При каком наименьшем N он гарантированно сможет это сделать?
|
|
|
Сложность: 4+ Классы: 10,11
|
На столе стоят 2004 коробочки, в каждой из которых лежит по
одному шарику. Известно, что некоторые из шариков – белые, и их
количество четно. Разрешается указать на любые две коробочки и спросить,
есть ли в них хотя бы один белый шарик. За какое наименьшее количество
вопросов можно гарантированно определить какую-нибудь коробочку, в которой
лежит белый шарик?
|
|
|
Сложность: 4+ Классы: 8,9,10
|
На столе стоят 2004 коробочки, в каждой из которых лежит по
одному шарику. Известно, что некоторые из шариков– белые, и их
количество четно. Разрешается указать на любые две коробочки и спросить,
есть ли в них хотя бы один белый шарик. За какое наименьшее количество
вопросов можно гарантированно определить какие-нибудь две коробочки, в
которых лежат белые шарики?
|
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Полиция задержала 50 человек, из которых 35 – преступники, которые говорят, что захотят, а 15 – свидетели, которые всегда говорят правду. Все задержанные знают, кто преступники. Какое наименьшее число человек достаточно выбрать, чтобы спросив потом у каждого, кто именно преступники, по ответам вычислить хотя бы одного преступника?
100 чисел, среди которых есть положительные и отрицательные, выписаны в ряд.
Подчеркнуто, во-первых, каждое положительное число, во-вторых, каждое число,
сумма которого со следующим положительна, и, в-третьих, каждое число, сумма
которого с двумя следующими положительна. Может ли сумма всех подчеркнутых чисел
оказаться отрицательной? Равной нулю?
Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 277]