ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 163]      



Задача 73538

Темы:   [ Раскраски ]
[ Целочисленные решетки ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Шестиугольники ]
[ Правильные многоугольники ]
Сложность: 5+
Классы: 9,10,11

   а) На рис. 1 плоскость покрыта квадратами пяти цветов. Центры квадратов одного и того же цвета расположены в вершинах сетки из одинаковых квадратов. При каком числе n цветов возможно аналогичное заполнение плоскости?

   б) На рис. 2 плоскость покрыта шестиугольниками семи цветов так, что центры шестиугольников одного и того же цвета образуют вершины решётки из одинаковых правильных треугольников. При каком числе n цветов возможно аналогичное построение?

   Примечание. Имеются в виду только такие заполнения плоскости фигурками (квадратами или шестиугольниками), при котором сетка, соответствующая какому-то одному цвету, имеет такие же размеры и направления сторон квадратов (или треугольников), как и сетка, соответствующая любому другому цвету (то есть все сетки должны получаться друг из друга параллельным сдвигом).

Прислать комментарий     Решение

Задача 73795

Темы:   [ Раскраски ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Индукция в геометрии ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Периодичность и непериодичность ]
Сложность: 7-
Классы: 8,9,10

Окружность разбита точками A1, A2,..., An на n равных дуг, каждая из которых окрашена в какой-то цвет. Две дуги окружности (с концами в точках разбиения) называем одинаково окрашенными, если при некотором повороте окружности одна из них полностью, включая цвета всех дуг, совпадает с другой. (Например, на рисунке дуги A2A6 и A6A10 одинаково окрашены.)

Докажите, что если для каждой точки разбиения Ak можно указать две непересекающиеся одинаково окрашенные дуги с общим концом Ak, то всю окружность можно разбить на несколько одинаково окрашенных дуг, то есть окраска периодическая. Рассмотрите сначала случай, когда красок всего две, скажем красная и чёрная.
Прислать комментарий     Решение


Задача 88217

Темы:   [ Разложение в произведение транспозиций и циклов ]
[ Раскраски ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 6,7,8

В городе Васюки у всех семей были отдельные дома. В один прекрасный день каждая семья переехала в дом, который раньше занимала другая семья. В связи с этим было решено покрасить все дома в красный, синий или зелёный цвет, причём так, чтобы для каждой семьи цвет нового и старого домов не совпадал. Можно ли это сделать?

Прислать комментарий     Решение

Задача 30946

Темы:   [ Четность и нечетность ]
[ Раскраски ]
[ Осевая и скользящая симметрии (прочее) ]
Сложность: 3
Классы: 6,7,8

Доска 9×9 раскрашена в девять цветов, причём раскраска симметрична относительно главной диагонали.
Доказать, что на этой диагонали все клетки раскрашены в разные цвета.

Прислать комментарий     Решение

Задача 32068

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Раскраски ]
Сложность: 3
Классы: 6,7,8

Квадратная площадь размером 100×100 выложена квадратными плитами 1×1 четырёх цветов: белого, красного, чёрного и серого – так, что никакие две плиты одинакового цвета не соприкасаются друг с другом (то есть не имеют общей стороны или вершины). Сколько может быть красных плит?

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 163]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .