Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 163]
|
|
|
Сложность: 4+ Классы: 8,9,10
|
Клетки квадрата
50×50
раскрашены в четыре цвета. Докажите, что
существует клетка, с четырех сторон от которой (т.е. сверху, снизу, слева
и справа) имеются клетки одного с ней цвета (не обязательно соседние с этой клеткой).
|
|
|
Сложность: 4+ Классы: 8,9,10
|
В городе Цветочном
n площадей и
m улиц (
m ≥
n + 1). Каждая улица соединяет две площади и не проходит через другие площади. По существующей в городе традиции улица может называться либо Синей, либо Красной. Ежегодно в городе происходит переименование: выбирается площадь и переименовываются все выходящие из неё улицы. Докажите, что можно назвать улицы так, что переименованиями нельзя добиться одинаковых названий у всех улиц города.
|
|
|
Сложность: 5- Классы: 10,11
|

У выпуклого белого многогранника некоторые грани покрашены чёрной краской так, что никакие две чёрные грани не имеют общего ребра. Докажите, что если
а) чёрных граней больше половины;
б) сумма площадей чёрных граней больше суммы площадей белых граней, то в этот многогранник нельзя вписать шар.
|
|
|
Сложность: 5- Классы: 9,10,11
|
Куб n×n×n сложен из единичных кубиков. Дана замкнутая несамопересекающаяся ломаная, каждое звено которой соединяет центры двух соседних (имеющих общую грань) кубиков. Назовём отмёченными грани кубиков, пересекаемые данной ломаной. Докажите, что рёбра кубиков можно окрасить в два цвета так, чтобы каждая отмеченная грань имела нечётное число, а всякая неотмеченная грань – чётное число сторон каждого цвета.
Даны
N ≥ 3 точек, занумерованных числами 1, 2, ...,
N. Каждые две точки соединены стрелкой от меньшего номера к большему. Раскраску всех стрелок в красный и синий цвета назовем
однотонной, если нет двух таких точек
A и
B, что от
A до
B можно добраться и по красным стрелкам, и по синим. Найдите количество однотонных раскрасок.
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 163]