ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) На столе лежат 111 спичек. Маша и Даша по очереди берут со стола по несколько спичек, но не больше десяти за один раз. Выигрывает тот, кто возьмет последнюю спичку. Кто победит при правильной игре?
б) На полу лежат три кучки - из 3, 4 и 5 спичек. Теперь Маша и Даша за один раз могут взять любое количество спичек, но только из одной кучки. Кто выиграет на этот раз?

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 119]      



Задача 86520

Темы:   [ Исследование квадратного трехчлена ]
[ Методы решения задач с параметром ]
Сложность: 3
Классы: 8,9,10,11

Про квадратный трехчлен  f(x) = ax² – ax + 1  известно, что  | f(x)| ≤ 1  при  0 ≤ x ≤ 1.  Найдите наибольшее возможное значение а.

Прислать комментарий     Решение

Задача 109457

Темы:   [ Исследование квадратного трехчлена ]
[ Графики и ГМТ на координатной плоскости ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10,11

На рисунке изображены графики трёх квадратных трёчленов.
Можно ли подобрать такие числа a, b и c, чтобы это были графики трёхчленов  ax² + bx + c,  bx² + cx + a  и  cx² + ax + b?

Прислать комментарий     Решение

Задача 111250

Темы:   [ Исследование квадратного трехчлена ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Существуют ли числа такие p и q, что уравнения  x² + (p – 1)x + q = 0  и  x² + (p + 1)x + q = 0  имеют по два различных корня, а уравнение
x² + px + q = 0  не имеет корней?

Прислать комментарий     Решение

Задача 115504

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 3
Классы: 8,9,10

Известно, что сумма любых двух из трёх квадратных трёхчленов  x² + ax + bx² + cx + dx² + ex + f  не имеет корней.
Может ли сумма всех этих трёхчленов иметь корни?

Прислать комментарий     Решение

Задача 116639

Темы:   [ Исследование квадратного трехчлена ]
[ Арифметическая прогрессия ]
[ Предел функции ]
Сложность: 3
Классы: 8,9,10

На доске написаны девять приведённых квадратных трёхчленов:  x² + a1x + b1x² + a2x + b2,  ...,  x² + a9x + b9. Известно, что последовательности  a1, a2, ..., a9  и  b1, b2, ..., b9  – арифметические прогрессии. Оказалось, что сумма всех девяти трёхчленов имеет хотя бы один корень. Какое наибольшее количество исходных трёхчленов может не иметь корней?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 119]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .