Страница:
<< 34 35 36 37
38 39 40 >> [Всего задач: 703]
|
|
|
Сложность: 4- Классы: 8,9,10
|
В ряд расположили n лампочек и зажгли некоторые из них. Каждую минуту после этого все лампочки, горевшие на прошлой минуте, гаснут, а те негоревшие лампочки, которые на прошлой минуте соседствовали ровно с одной горящей лампочкой, загораются. При каких n можно так зажечь некоторые лампочки в начале, чтобы потом в любой момент нашлась хотя бы одна горящая лампочка?
|
|
|
Сложность: 4- Классы: 9,10
|
Можно ли из геометрической прогрессии 1, ½, ¼, ⅛, ... выделить геометрическую прогрессию с суммой членов, равной а) 1/7; б) ⅕?
|
|
|
Сложность: 4- Классы: 8,9,10
|
Может ли число 1·2 + 2·3 + ... + k(k + 1) при k = 6p – 1 быть квадратом?
|
|
|
Сложность: 4- Классы: 9,10,11
|
Могут ли все числа 1, 2, 3 ... 100 быть членами 12 геометрических прогрессий?
|
|
|
Сложность: 4- Классы: 9,10
|
Докажите, что в арифметической прогрессии с первым членом, равным 1, и разностью, равной 729, найдётся бесконечно много членов, являющихся степенью числа 10.
Страница:
<< 34 35 36 37
38 39 40 >> [Всего задач: 703]