Страница:
<< 31 32 33 34
35 36 37 >> [Всего задач: 703]
|
|
|
Сложность: 4- Классы: 9,10,11
|
Изначально на стол положили 100 карточек, на каждой из которых записано по натуральному числу; при этом было ровно 43 карточки с нечётными числами. Затем каждую минуту проводилась следующая процедура. Для каждых трёх карточек, лежащих на столе, вычислялось произведение записанных на них чисел, все эти произведения складывались, и полученное число записывалось на новую карточку, которая добавлялась к лежащим на столе. Через год после начала процесса выяснилось, что на столе есть карточка с числом, кратным 210000. Докажите, что число, кратное 210000, было на одной из карточек уже через день после начала.
|
|
|
Сложность: 4- Классы: 8,9,10,11
|
Покажите, что для любой последовательности $a_0$, $a_1$, ..., $a_n$, ..., состоящей из единиц и минус единиц, найдутся такие $n$ и $k$, что $|a_0a_1...a_k + a_1a_2...a_{k+1} + ... + a_na_{n+1}...a_{n+k}| = 2017.$
|
|
|
Сложность: 4- Классы: 9,10,11
|
Первая производная бесконечной последовательности $a_1, a_2$, ... – это последовательность $a'_n = a_{n+1} - a_n$ (где $n$ = 1, 2, ...), а её k-я производная – это первая производная её ($k$–1)-й производной
($k$ = 2, 3, ...). Назовём последовательность хорошей, если она и все её производные состоят из положительных чисел. Докажите, что если $a_1, a_2$, ... и $b_1, b_2$, ... – хорошие последовательности, то и $a_1b_1, a_2b_2$, ... – хорошая последовательность.
|
|
|
Сложность: 4- Классы: 9,10,11
|
Докажите, что для любого натурального числа n
Пусть x0 = 109,
xn =
. Доказать, что 0 < x36 –
< 10–9.
Страница:
<< 31 32 33 34
35 36 37 >> [Всего задач: 703]