ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Докажите, что с помощью поворота

x'' = x'cosφ + y'sinφ,    y'' = - x'sinφ + y'cosφ

в уравнении ax'2 + 2bx'y' + cy'2 = f' коэффициент при x'y' можно сделать равным нулю.

Вниз   Решение


Какое наибольшее число коней можно расставить на шахматной доске так, чтобы каждый бил не более семи из остальных?

ВверхВниз   Решение


Треугольник можно разрезать на три равных треугольника. Докажите, что один из его углов равен 60°.

ВверхВниз   Решение


Внутри параллелограмма ABCD выбрана точка M, а внутри треугольника AMD точка N, причём  ∠MNA + ∠ MCB = ∠MND + ∠MBC = 180°.
Докажите, что прямые MN и AB параллельны.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 2458]      



Задача 97929

Темы:   [ Четность и нечетность ]
[ Инварианты ]
Сложность: 2
Классы: 7,8,9

Автор: Назаров Ф.

Автомат при опускании гривенника выбрасывает пять двушек, а при опускании двушки – пять гривенников.
Может ли Петя, подойдя к автомату с одной двушкой, получить после нескольких опусканий одинаковое количество двушек и гривенников?

Прислать комментарий     Решение

Задача 98024

Темы:   [ Уравнения в целых числах ]
[ Цепные (непрерывные) дроби ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 2
Классы: 7,8,9

Решить в натуральных числах уравнение:  

Прислать комментарий     Решение

Задача 102810

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 5,6,7

Расставьте по кругу четыре единицы, три двойки и три тройки так, чтобы сумма любых трёх подряд стоящих чисел не делилась на 3.

Прислать комментарий     Решение

Задача 102962

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 5,6

У семи Чебурашек есть по два воздушных шарика: красный и жёлтый.
Могут ли они так поменяться друг с другом шариками, чтобы у каждого было по два шарика одного цвета?

Прислать комментарий     Решение

Задача 103729

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 6,7

В парламенте некоторой страны две палаты, имеющие равное число депутатов. В голосовании по важному вопросу приняли участие все депутаты, причём воздержавшихся не было. Когда председатель сообщил, что решение принято с преимуществом в 23 голоса, лидер оппозиции заявил, что результаты голосования сфальсифицированы. Как он это понял?

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 2458]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .