|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что можно найти бесконечно много таких пар целых чисел, что в десятичной записи каждого числа все цифры не меньше 7 и произведение чисел каждой пары – тоже число, где все цифры не меньше 7. Скупой рыцарь хранит золотые монеты в 77 сундуках. Однажды, пересчитывая их, он заметил, что если открыть любые два сундука, то можно разложить лежащие в них монеты поровну по этим двум сундукам. Потом он заметил, что если открыть любые 3, или любые 4, ..., или любые 76 сундуков, то тоже можно так переложить лежащие в них монеты, что во всех открытых сундуках станет поровну монет. Тут ему почудился стук в дверь, и старый скряга не успел проверить, можно ли разложить все монеты поровну по всем 77 сундукам. Можно ли, не заглядывая в сундуки, дать точный ответ на этот вопрос? Из точки M по плоскости с постоянной скоростью ползёт муравей. Его путь представляет собой спираль, которая наматывается на точку O и гомотетична некоторой своей части относительно этой точки. Сможет ли муравей пройти весь свой путь за конечное время? На каждом из двух огородов Дед посадил по одинаковому количеству репок. Если в огород заходит Внучка, то она выдергивает ровно ⅓ репок, имеющихся к этому моменту. Если заходит Жучка, то она выдергивает 1/7 репок, а если заходит Мышка, то она выдергивает только 1/12 репок. К концу недели на первом огороде осталось 7 репок, а на втором – 4. Заходила ли Жучка во второй огород? Постройте треугольник ABC, если известны длина биссектрисы CD и длины отрезков AD и BD, на которые она делит сторону AB. |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 368]
Известно, что b = 20132013 + 2. Будут ли числа b³ + 1 и b² + 2 взаимно простыми?
Докажите, что сумма квадратов трёх натуральных чисел, уменьшенная на 7, не делится на 8.
Докажите, что 3099 + 61100 делится на 31.
Доказать, что если a² + b² делится на 7, то и ab делится на 7.
Доказать, что 4343 + 1717 делится на 10.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 368] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|