ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Докажите, что можно найти бесконечно много таких пар целых чисел, что в десятичной записи каждого числа все цифры не меньше 7 и произведение чисел каждой пары – тоже число, где все цифры не меньше 7.

Вниз   Решение


Скупой рыцарь хранит золотые монеты в 77 сундуках. Однажды, пересчитывая их, он заметил, что если открыть любые два сундука, то можно разложить лежащие в них монеты поровну по этим двум сундукам. Потом он заметил, что если открыть любые 3, или любые 4, ..., или любые 76 сундуков, то тоже можно так переложить лежащие в них монеты, что во всех открытых сундуках станет поровну монет. Тут ему почудился стук в дверь, и старый скряга не успел проверить, можно ли разложить все монеты поровну по всем 77 сундукам. Можно ли, не заглядывая в сундуки, дать точный ответ на этот вопрос?

ВверхВниз   Решение


Из точки M по плоскости с постоянной скоростью ползёт муравей. Его путь представляет собой спираль, которая наматывается на точку O и гомотетична некоторой своей части относительно этой точки. Сможет ли муравей пройти весь свой путь за конечное время?

ВверхВниз   Решение


На каждом из двух огородов Дед посадил по одинаковому количеству репок. Если в огород заходит Внучка, то она выдергивает ровно ⅓ репок, имеющихся к этому моменту. Если заходит Жучка, то она выдергивает 1/7 репок, а если заходит Мышка, то она выдергивает только 1/12 репок. К концу недели на первом огороде осталось 7 репок, а на втором – 4. Заходила ли Жучка во второй огород?

ВверхВниз   Решение


Постройте треугольник ABC, если известны длина биссектрисы CD и длины отрезков AD и BD, на которые она делит сторону AB.

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 368]      



Задача 116999

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 9,10,11

Автор: Фольклор

Известно, что  b = 20132013 + 2.  Будут ли числа  b³ + 1  и  b² + 2  взаимно простыми?

Прислать комментарий     Решение

Задача 30383

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

Докажите, что сумма квадратов трёх натуральных чисел, уменьшенная на 7, не делится на 8.

Прислать комментарий     Решение

Задача 30594

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8

Докажите, что  3099 + 61100  делится на 31.

Прислать комментарий     Решение

Задача 31238

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 6,7,8

Доказать, что если  a² + b²  делится на 7, то и ab делится на 7.

Прислать комментарий     Решение

Задача 31240

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 6,7,8

Доказать, что  4343 + 1717  делится на 10.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 368]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .