ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Автор: Лифшиц Ю.

Клетки квадрата 9×9 окрашены в красный и белый цвета. Докажите, что найдётся или клетка, у которой ровно два красных соседа по углу, или клетка, у которой ровно два белых соседа по углу (или и то, и другое).

Вниз   Решение


Дан вписанный четырехугольник $ABCD$. Прямые $AB$ и $DC$ пересекаются в точке $E$, а прямые $BC$ и $AD$ — в точке $F$. В треугольнике $AED$ отмечен центр вписанной окружности $I$, а из точки $F$ проведен луч, перпендикулярный биссектрисе угла $AID$. В каком отношении этот луч делит угол $AFB$?

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 368]      



Задача 116999

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 9,10,11

Автор: Фольклор

Известно, что  b = 20132013 + 2.  Будут ли числа  b³ + 1  и  b² + 2  взаимно простыми?

Прислать комментарий     Решение

Задача 30383

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

Докажите, что сумма квадратов трёх натуральных чисел, уменьшенная на 7, не делится на 8.

Прислать комментарий     Решение

Задача 30594

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8

Докажите, что  3099 + 61100  делится на 31.

Прислать комментарий     Решение

Задача 31238

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 6,7,8

Доказать, что если  a² + b²  делится на 7, то и ab делится на 7.

Прислать комментарий     Решение

Задача 31240

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 6,7,8

Доказать, что  4343 + 1717  делится на 10.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 368]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .