|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В выпуклом четырёхугольнике тангенс одного из углов равен числу m. Могут ли тангенсы каждого из трёх остальных углов также равняться m? На турнире им. Ломоносова в институте МИМИНО были конкурсы по математике, физике, химии, биологии и бальным танцам. Когда турнир закончился, выяснилось, что на каждом конкурсе побывало нечётное количество школьников, и каждый школьник участвовал в нечётном количестве конкурсов. Чётное или нечётное число школьников пришло на турнир в МИМИНО? |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 368]
Существуют ли четыре последовательных натуральных числа, каждое из которых можно представить в виде суммы квадратов двух натуральных чисел?
Известно, что b = 20132013 + 2. Будут ли числа b³ + 1 и b² + 2 взаимно простыми?
Докажите, что сумма квадратов трёх натуральных чисел, уменьшенная на 7, не делится на 8.
Докажите, что 3099 + 61100 делится на 31.
Доказать, что если a² + b² делится на 7, то и ab делится на 7.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 368] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|