ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В выражении  1*2*3*...*9  звёздочки заменяют на минус или плюс.
  a) Может ли получиться 0?
  б) Может ли получиться 1?
  в) Какие числа могут получиться?

Вниз   Решение


Автор: Фольклор

Можно ли внутри выпуклого пятиугольника отметить 18 точек так, чтобы внутри каждого из десяти треугольников, образованных его вершинами, отмеченных точек было поровну?

ВверхВниз   Решение


a) Восемь школьников решали восемь задач. Оказалось, что каждую задачу решили пять школьников. Докажите, что найдутся такие два школьника, что каждую задачу решил хотя бы один из них.
б) Если каждую задачу решили четыре ученика, то может оказаться, что таких двоих не найдётся.

ВверхВниз   Решение


Пусть a, b, c – натуральные числа.
а) Докажите, что если  НОК(a, a + 5) = HOK(b, b + 5),  то  a = b.
б) Могут ли  НОК(a, b)  и  НОК(а + с, b + с)  быть равны?

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 13]      



Задача 61048

Темы:   [ Интерполяционный многочлен Лагранжа ]
[ Многочлен n-й степени имеет не более n корней ]
Сложность: 3
Классы: 8,9,10

Решите уравнение  

Прислать комментарий     Решение

Задача 61049

Темы:   [ Интерполяционный многочлен Лагранжа ]
[ Многочлен n-й степени имеет не более n корней ]
Сложность: 3
Классы: 8,9,10

Докажите тождество  

Прислать комментарий     Решение

Задача 61050

Тема:   [ Интерполяционный многочлен Лагранжа ]
Сложность: 3
Классы: 8,9,10

Пусть  x1 < x2 < ... < xn  – действительные числа. Постройте многочлены   f1(x),  f2(x), ...,  fn(x)  степени  n – 1,  которые удовлетворяют условиям   fi(xi) = 1  и   fi(xj) = 0  при  i ≠ j  (i, j = 1, 2, ..., n).

Прислать комментарий     Решение

Задача 61055

Тема:   [ Интерполяционный многочлен Лагранжа ]
Сложность: 3+
Классы: 8,9,10

Постройте многочлены  f(x) степени не выше 2, которые удовлетворяют условиям:
  а)   f(0) = 1,   f(1) = 3,   f(2) = 3;
  б)   f(–1) = –1,   f(0) = 2,   f(1) = 5;
  в)   f(–1) = 1,   f(0) = 0,   f(2) = 4.

Прислать комментарий     Решение

Задача 61056

Темы:   [ Интерполяционный многочлен Лагранжа ]
[ Задачи на движение ]
Сложность: 4-
Классы: 8,9,10,11

Корабль с постоянной скоростью проплывает мимо небольшого острова. Капитан каждый час измеряет расстояние до острова.
В 12, 14 и 15 часов расстояния равнялись 7, 5 и 11 километров соответственно.
Каким было расстояние до острова в 13 часов? Чему оно будет равно в 16 часов?

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .