ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из каждой вершины многоугольника опущены перпендикуляры на стороны, её не содержащие. Докажите, что хотя бы для одной вершины одно из оснований перпендикуляров лежит на самой стороне, а не на её продолжении.

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 95]      



Задача 116563

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования (тригонометрия) ]
[ Доказательство от противного ]
Сложность: 2+
Классы: 10,11

Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?

Прислать комментарий     Решение

Задача 60845

Темы:   [ Рациональные и иррациональные числа ]
[ Периодические и непериодические дроби ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9

Пусть число α задаётся десятичной дробью
  а) 0,101001000100001000001...;
  б) 0,123456789101112131415....
Будет ли это число рациональным?

Прислать комментарий     Решение

Задача 61014

Темы:   [ Рациональные и иррациональные числа ]
[ Многочлены (прочее) ]
Сложность: 3
Классы: 8,9,10

Выведите из теоремы 61013 то, что   – иррациональное число.

Прислать комментарий     Решение

Задача 60865

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 3
Классы: 9,10

Докажите, что при x≠πn (n– целое) sin x и cos x рациональны тогда и только тогда, когда число tg $ {\dfrac{x}{2}}$ рационально.

Прислать комментарий     Решение

Задача 35105

Темы:   [ Рациональные и иррациональные числа ]
[ Корни. Степень с рациональным показателем (прочее) ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 3+
Классы: 10,11

Существуют ли такие иррациональные числа a и b, что степень ab - число рациональное?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 95]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .