ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Салимов Р.

Первая производная бесконечной последовательности $a_1, a_2$, ... – это последовательность  $a'_n = a_{n+1} - a_n$  (где  $n$ = 1, 2, ...), а её k-я производная – это первая производная её ($k$–1)-й производной
($k$ = 2, 3, ...).  Назовём последовательность хорошей, если она и все её производные состоят из положительных чисел. Докажите, что если $a_1, a_2$, ... и $b_1, b_2$, ... – хорошие последовательности, то и $a_1b_1, a_2b_2$, ... – хорошая последовательность.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 63]      



Задача 88198

Темы:   [ Взвешивания ]
[ Раскладки и разбиения ]
Сложность: 2+
Классы: 6,7,8

Какие восемь монет нужно взять, чтобы с их помощью можно было бы без сдачи заплатить любую сумму от 1 коп. до 1 руб.?
(В хождении были монеты в 1, 3, 5, 10, 20 и 50 коп.)

Прислать комментарий     Решение

Задача 104048

Темы:   [ Сочетания и размещения ]
[ Раскладки и разбиения ]
Сложность: 2+
Классы: 7,8,9

Сколькими способами можно разложить девять орехов по трём карманам? (Карманы разные, а орехи одинаковые.)

Прислать комментарий     Решение

Задача 78204

Темы:   [ Перебор случаев ]
[ Раскладки и разбиения ]
[ Четность и нечетность ]
Сложность: 3-
Классы: 8,9

Указать все денежные суммы, выраженные целым числом рублей, которые могут быть представлены как чётным, так и нечётным числом денежных билетов. (В обращении имелись билеты достоинством в 1, 3, 5, 10, 25, 50 и 100 рублей.)

Прислать комментарий     Решение

Задача 30692

Темы:   [ Сочетания и размещения ]
[ Раскладки и разбиения ]
Сложность: 3-
Классы: 7,8

Сколькими способами можно разбить 10 человек на две баскетбольные команды по 5 человек в каждой?

Прислать комментарий     Решение

Задача 98651

Темы:   [ Индукция (прочее) ]
[ Раскладки и разбиения ]
[ Перебор случаев ]
[ Деление с остатком ]
Сложность: 3-
Классы: 6,7,8

Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 63]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .