ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 54]      



Задача 98352

Темы:   [ Взвешивания ]
[ Двоичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 8,9,10

Автор: Разин М.

Имеется набор из 20 гирь, с помощью которых можно взвесить любой целый вес от 1 до 1997 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каков минимально возможный вес самой тяжелой гири такого набора, если:
  а) веса гирь набора все целые,
  б) веса не обязательно целые?

Прислать комментарий     Решение

Задача 74220

Темы:   [ Теория множеств (прочее) ]
[ Двоичная система счисления ]
[ Геометрические интерпретации в алгебре ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 9,10,11

Автор: Федоров А.

Два подмножества множества натуральных чисел называют конгруэнтными, если одно получается из другого сдвигом на целое число. (Например, множества чётных и нечётных чисел конгруэнтны.) Можно ли разбить множество натуральных чисел на бесконечное число (не пересекающих друг друга) бесконечных конгруэнтных подмножеств?
Прислать комментарий     Решение


Задача 73650

Темы:   [ Процессы и операции ]
[ Двоичная система счисления ]
[ Взвешивания ]
Сложность: 5+
Классы: 9,10,11

В три сосуда налито по целому числу литров воды. В любой сосуд разрешено перелить столько воды, сколько в нём уже содержится, из любого другого сосуда. Докажите, что несколькими такими переливаниями можно освободить один из сосудов. (Сосуды достаточно велики: каждый может вместить всю воду.)
Прислать комментарий     Решение


Задача 73775

Темы:   [ Теория алгоритмов (прочее) ]
[ Двоичная система счисления ]
[ Показательные неравенства ]
[ Логарифмические неравенства ]
Сложность: 6+
Классы: 9,10,11

По заданному ненулевому x значение x8 можно найти за три арифметических действия: x2 = x · x, x4 = x2 · x2, x8 = x4 · x4, а x15 за пять действий: первые три — те же самые, затем x8 · x8 = x16 и x16 : x = x16. Докажите, что

а) x16 можно найти за 12 действий (умножений и делений);

б) для любого натурального n возвести x в n-ю степень можно не более чем за 1 + 1,5 · log2n действий.
Прислать комментарий     Решение


Задача 60875

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Двоичная система счисления ]
Сложность: 7
Классы: 10,11

Определим последовательности чисел {xn} и {dn} условиями

x1 = 1,    xn + 1 = [ $\displaystyle \sqrt{2x_n(x_n+1)}$ ],        dn = x2n + 1 - 2x2n - 1    (n $\displaystyle \geqslant$ 1).

Докажите, что число $ \sqrt{2}$ в двоичной системе счисления представляется в виде $ \sqrt{2}$ = (d1, d2d3...)2.
Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 54]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .