|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что если одна из двух параллельных прямых перпендикулярна некоторой плоскости, то и вторая прямая перпендикулярна этой плоскости. Имеется 2k + 1 карточек, занумерованных числами от 1 до 2k + 1. Какое наибольшее число карточек можно выбрать так, чтобы ни один из извлечённых номеров не был равен сумме двух других извлечённых номеров? Дан тетраэдр ABCD , в котором AB = BD = 3 , AC = CD = 5 , AD = BC = 4 . Найдите AM , где M – точка пересечения медиан грани BCD . Докажите неравенство для положительных значений переменных: Найдите все такие натуральные k, что произведение первых k нечётных простых чисел, уменьшенное на 1, является точной степенью натурального числа (большей, чем первая). k ≥ 6 – натуральное число. Докажите, что если некоторый многочлен с целыми коэффициентами принимает в k целых точках значения среди чисел от 1 до k – 1, то эти значения равны. Дан угол с вершиной O и внутри него точка A. Рассмотрим такие точки M, N на разных сторонах данного угла, что углы MAO и OAN равны. |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 96]
где R – радиус описанной окружности треугольника ABC .
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 96] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|