ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В Стране Чудес проводилось следствие по делу об украденном бульоне. На суде Мартовский Заяц заявил, что бульон украл Болванщик. Соня и Болванщик тоже дали показания, но что они сказали, никто не запомнил, а запись смыло алисиными слезами. В ходе судебного заседания выяснилось, что бульон украл лишь один из подсудимых и что только он дал правдивые показания. Так кто украл бульон?

Вниз   Решение


Дан отрезок, равный 1. Постройте отрезки, равные , , .

ВверхВниз   Решение


В остроугольном треугольнике ABC  AA1, BB1 и CC1 – высоты. Прямые AA1 и B1C1 пересекаются в точке K. Окружности, описанные вокруг треугольников A1KC1 и A1KB1, вторично пересекают прямые AB и AC в точках N и L соответственно. Докажите, что
  а) сумма диаметров этих окружностей равна стороне BC.

  б)  

ВверхВниз   Решение


У двух человек было два квадратных торта. Каждый сделал на своём торте по 2 прямолинейных разреза от края до края. При этом у одного получилось три куска, а у другого  — четыре. Как это могло быть?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1365]      



Задача 87949

Тема:   [ Разрезания (прочее) ]
Сложность: 2-
Классы: 5,6,7

У двух человек было два квадратных торта. Каждый сделал на своём торте по 2 прямолинейных разреза от края до края. При этом у одного получилось три куска, а у другого  — четыре. Как это могло быть?
Прислать комментарий     Решение


Задача 87954

Темы:   [ Разрезания (прочее) ]
[ Инварианты ]
Сложность: 2-
Классы: 5,6,7

На какое максимальное число кусков можно разделить круглый блинчик при помощи трех прямолинейных разрезов?
Прислать комментарий     Решение


Задача 104029

Тема:   [ Геометрия на клетчатой бумаге ]
Сложность: 2-
Классы: 7,8

а) В конструкции на рисунке переложите две спички так, чтобы получилось пять равных квадратов.
б) Из новой фигуры уберите 3 спички так, чтобы осталось только 3 квадрата.

Прислать комментарий     Решение

Задача 57750

Тема:   [ Теорема о группировке масс ]
Сложность: 2
Классы: 9

Докажите, что медианы треугольника ABC пересекаются в одной точке и делятся ею в отношении 2 : 1, считая от вершины.
Прислать комментарий     Решение


Задача 58220

Тема:   [ Равносоставленные фигуры ]
Сложность: 2
Классы: 8,9

Разрежьте произвольный треугольник на 3 части и сложите из них прямоугольник.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1365]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .