|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Замкнутая, возможно, самопересекающаяся ломаная симметрична относительно не лежащей на ней точки $O$. Докажите, что число оборотов ломаной вокруг $O$ нечётно. (Числом оборотов вокруг $O$ называется сумма ориентированных углов $$\angle A_1OA_2+\angle A_2OA_3+\ldots+\angle A_{n-1}OA_n+\angle A_nOA_1,$$ делённая на $2\pi$.) Найти все натуральные числа x, обладающие следующим свойством: из каждой цифры числа x можно вычесть одну и ту же цифру a ≠ 0 (все цифры его не меньше a) и при этом получится (x − a)². |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 601]
Сколько существует восьмизначных чисел, в записи которых цифры идут в порядке убывания?
Найти все натуральные числа x, обладающие следующим свойством: из каждой цифры числа x можно вычесть одну и ту же цифру a ≠ 0 (все цифры его не меньше a) и при этом получится (x − a)².
Незнайка взял у Пилюлькина книжку и сосчитал, сколько понадобилось цифр, чтобы пронумеровать все страницы, начиная с первой. У него получилось 100 цифр. Могло ли так быть, или Незнайка ошибся? Если могло, скажите, сколько было страниц.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 601] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|