ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: 1 2 >> [Всего задач: 7]
1) m и k записываются в двоичной системе счисления
m = (ms...m1m0)2, k = (ks...k1k0)2
(меньшее
число дополняется спереди нулями).
2) Полученные наборы цифр как векторы складываются покомпонентно по модулю 2:
(ms,..., m1, m0) + (ks,..., k1, k0) (ns,..., n1, n0)(mod 2).
3) Набор цифр
(ns,..., n1, n0) переводится в число n:
(ns...n1n0)2 = n.
Например, 4 7 = 3, так как
4 = (100)2, 7 = (111)2, (1, 0, 0) + (1, 1, 1) (0, 1, 1)(mod 2), (011)2 = 3.
Докажите, что ним-сумма удовлетворяет следующим свойствам:
а) m m = 0; б) m k = k m; в) (m t) k = m (t k); г) если n 0 и то найдется такой номер j ( 1 j l), для которого mj n < mj.
Постройте на множестве марсианских амеб {A, B, C} функцию f, для которой выполнялись бы равенства
f (A) f (B) = f (C), f (A) f (C) = f (B), f (B) f (C) = f (A).
Какие рассуждения остается провести, чтобы решить задачу про амеб?
а) Докажите, что если игрок делает ход из позиции с нулевой ним-суммой, то в результате получается позиция с ним-суммой n 0. б) Докажите, что из позиции с ненулевой ним-суммой всегда можно сделать ход в позицию с ним-суммой n = 0. в) Опишите выигрышную стратегию в игру ``Ним''. г) Какой следует сделать ход, если перед вами три кучки: 3, 4 и 5 камней?
б) На полу лежат три кучки - из 3, 4 и 5 спичек. Теперь Маша и Даша за один раз могут взять любое количество спичек, но только из одной кучки. Кто выиграет на этот раз?
Страница: 1 2 >> [Всего задач: 7] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|