ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Докажите, что из пяти векторов всегда можно выбрать два так, чтобы длина их суммы не превосходила длины суммы оставшихся трех векторов.

Вниз   Решение


Через данную вершину A выпуклого четырёхугольника ABCD провести прямую, делящую его площадь пополам.

ВверхВниз   Решение


Два правильных равных треугольника расположены в пространстве в параллельных плоскостях P1 и P2, причём отрезок, соединяющий их центры, перпендикулярен плоскостям. Найти геометрическое место точек, являющихся серединами отрезков, соединяющих точки одного треугольника с точками другого треугольника.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 13]      



Задача 78254

Темы:   [ ГМТ в пространстве (прочее) ]
[ Инверсия помогает решить задачу ]
[ Вписанный угол, опирающийся на диаметр ]
[ Конус (прочее) ]
Сложность: 5-
Классы: 10,11

Окружность S и точка O лежат в одной плоскости, причём O находится вне окружности. Построим произвольный шар, проходящий через окружность S, и опишем конус с вершиной в точке O и касающийся шара. Найти геометрическое место центров окружностей, по которым конусы касаются шаров.
Прислать комментарий     Решение


Задача 78217

Темы:   [ ГМТ в пространстве (прочее) ]
[ Выпуклые многоугольники ]
[ Скрещивающиеся прямые и ГМТ ]
Сложность: 5
Классы: 10,11

Два правильных равных треугольника расположены в пространстве в параллельных плоскостях P1 и P2, причём отрезок, соединяющий их центры, перпендикулярен плоскостям. Найти геометрическое место точек, являющихся серединами отрезков, соединяющих точки одного треугольника с точками другого треугольника.
Прислать комментарий     Решение


Задача 77977

Темы:   [ Тетраэдр (прочее) ]
[ ГМТ в пространстве (прочее) ]
Сложность: 2+
Классы: 11

Дан прямой круговой конус и точка O. Найти геометрическое место вершин конусов, равных данному, с осями, параллельными оси данного конуса, и содержащих внутри данную точку O.
Прислать комментарий     Решение


Задача 87584

Темы:   [ Углы между прямыми и плоскостями ]
[ ГМТ в пространстве (прочее) ]
Сложность: 3
Классы: 10,11

Рассмотрим всевозможные прямые, проходящие через точку A , не принадлежащую плоскости π , и образующие равные углы с этой плоскостью (углы, отличные от нуля). Найдите геометрическое место точек пересечения этих прямых с плоскостью π .
Прислать комментарий     Решение


Задача 87585

Темы:   [ Углы между прямыми и плоскостями ]
[ ГМТ в пространстве (прочее) ]
Сложность: 3
Классы: 10,11

На плоскости α даны три точки A , B и C , не лежащие на одной прямой. Пусть M – такая точка в пространстве, что прямые MA , MB и MC образуют равные углы с плоскостью α . Найдите геометрическое место точек M .
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .