|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Пусть f(x) = x² + 12x + 30. Решите уравнение f(f(f(f(f(x))))) = 0. Попробуйте найти все натуральные числа, которые больше своей последней цифры в 5 раз. Кот в Сапогах наловил щук: он поймал четырёх щук и еще половину улова. Сколько щук поймал Кот в Сапогах? Пусть xy + yz + xz = 1. Докажите равенство: Существуют ли два таких четырехугольника, что стороны первого меньше соответствующих сторон второго, а соответствующие диагонали больше? В пространстве даны две скрещивающиеся перпендикулярные прямые. Найти множество середин всех отрезков данной длины, концы которых лежат на этих прямых. Сто друзей, среди которых есть Петя и Вася, живут в нескольких городах. Петя узнал расстояние от своего города до города каждого из оставшихся 99 друзей и сложил эти 99 чисел. Аналогично поступил Вася. Петя получил 1000 км. Какое наибольшее число мог получить Вася? (Города считайте точками плоскости; если двое живут в одном и том же городе, расстояние между их городами считается равным нулю.) 3 равные окружности с центрами O1, O2, O3 пересекаются в данной точке. A1, A2, A3 — остальные точки пересечения. Доказать, что треугольники O1O2O3 и A1A2A3 равны. |
Страница: 1 2 3 >> [Всего задач: 11]
Три равные окружности пересекаются в одной точке. Докажите, что треугольник с вершинами в остальных точках попарного пересечения окружностей равен треугольнику с вершинами в центрах окружностей.
Даны три равных окружности, пересекающихся в одной точке. Вторая точка пересечения каких-либо двух из этих окружностей и центр третьей определяют проходящую через них прямую. Докажите, что полученные три прямые пересекаются в одной точке.
а) H — точка пересечения высот треугольника ABC; б) радиус описанной окружности треугольника ABC тоже равен R.
Страница: 1 2 3 >> [Всего задач: 11] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|