|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Изобразите ту часть плоскости (x;y), которая накрывается всевозможными кругами вида
(x - a)2 + (y - a)2
Четыре дома расположены в вершинах выпуклого четырёхугольника. Где нужно вырыть колодец, чтобы сумма расстояний от него до четырёх домов была наименьшей?
Найдите ребро куба, вписанного в сферу радиуса R. Докажите, что не существует многочлена P(x) с целыми коэффициентами, для которого P(6) = 5 и P(14) = 9. Сколько существует четырёхзначных номеров (от 0001 до 9999), у которых сумма двух первых цифр равна сумме двух последних цифр? |
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 157]
Найти число решений в натуральных числах уравнения [x/10] = [x/11] + 1.
а) Леша поднимается по лестнице из 10 ступенек. За один раз он прыгает вверх либо на одну ступеньку, либо на две ступеньки. Сколькими способами Леша может подняться по лестнице?
Найдите число отличных билетов.
Сколькими способами можно представить 1000000 в виде произведения трёх множителей, если произведения, отличающиеся порядком множителей,
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 157] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|