ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Докажите, что при умножении многочлена  (x + 1)n–1  на любой многочлен, отличный от нуля, получается многочлен, имеющий не менее n отличных от нуля коэффициентов.

Вниз   Решение


24 студента решали 25 задач. У преподавателя есть таблица размером 24×25, в которой записано, кто какие задачи решил. Оказалось, что каждую задачу решил хотя бы один студент. Докажите, что
  а) можно отметить некоторые задачи "галочкой" так, что каждый из студентов решил чётное число (в частности, может быть, нуль) отмеченных задач;
  б) можно отметить некоторые из задач знаком "+", а некоторые из остальных – знаком "–" и приписать каждой задаче некоторое натуральное число баллов так, чтобы каждый студент набрал поровну баллов за задачи, отмеченные знаками "+" и "–".

ВверхВниз   Решение


В треугольник вписан квадрат так, что две его вершины лежат на основании, а две другие вершины — на боковых сторонах треугольника. Доказать, что сторона квадрата меньше 2r, но больше $ \sqrt{2}$r, где r — радиус окружности, вписанной в треугольник.

ВверхВниз   Решение


Ювелиру заказали золотое кольцо шириной h, имеющее форму тела, ограниченного поверхностью шара с центром О и поверхностью цилиндра радиусом r, ось которого проходит через точку О. Мастер сделал такое колечко, но выбрал r слишком маленьким. Сколько золота ему придётся добавить, если r нужно увеличить в k раз, а ширину h оставить прежней?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 30910

Темы:   [ Объем шара, сегмента и проч. ]
[ Объем круглых тел ]
Сложность: 3
Классы: 6,7

Представьте себе, что Землю "раскатали в колбаску" так, чтобы она достала до Солнца.
Какой толщины будет эта "колбаска"? Постарайтесь ошибиться не более чем в 10 раз.

Прислать комментарий     Решение

Задача 110325

Темы:   [ Объем шара, сегмента и проч. ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Центр шара единичного радиуса расположен на ребре двугранного угла, равного α . Найдите радиус шара, объём которого равен объёму части данного шара, находящейся внутри двугранного угла.
Прислать комментарий     Решение


Задача 73602

Темы:   [ Объем шара, сегмента и проч. ]
[ Объем круглых тел ]
Сложность: 5-
Классы: 10,11

Ювелиру заказали золотое кольцо шириной h, имеющее форму тела, ограниченного поверхностью шара с центром О и поверхностью цилиндра радиусом r, ось которого проходит через точку О. Мастер сделал такое колечко, но выбрал r слишком маленьким. Сколько золота ему придётся добавить, если r нужно увеличить в k раз, а ширину h оставить прежней?
Прислать комментарий     Решение


Задача 87457

Темы:   [ Сферы (прочее) ]
[ Объем шара, сегмента и проч. ]
Сложность: 3
Классы: 10,11

Проведены две параллельные плоскости по одну сторону от центра шара на расстоянии 3 друг от друга. Эти плоскости дают в сечении два малых круга, радиусы которых соответственно равны 9 и 12. Найдите объём шара.
Прислать комментарий     Решение


Задача 87384

Темы:   [ Касательные к сферам ]
[ Объем шара, сегмента и проч. ]
Сложность: 4
Классы: 10,11

Отрезок EF параллелен плоскости, в которой лежит прямоугольник ABCD , причём EF = 2 , AB = 4 . Все стороны прямоугольника ABCD и отрезки AE , BE , CF , DF , EF касаются некоторого шара. Найдите объём этого шара.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .