ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Площадь треугольника равна 1. Докажите, что средняя по длине его сторона не меньше $ \sqrt{2}$.

Вниз   Решение


Все рёбра правильной четырёхугольной пирамиды равны a . Найдите высоту пирамиды.

ВверхВниз   Решение


На стороне BC треугольника ABC как на диаметре построена окружность, пересекающая отрезок AB в точке D. Найдите отношение площадей треугольников ABC и BCD, если известно, что AC = 15, BC = 20 и $ \angle$ABC = $ \angle$ACD.

ВверхВниз   Решение


(Для знакомых с основами алгебры) В целочисленном массиве a[1]...a[n] хранится перестановка чисел 1...n (каждое из чисел встречается по одному разу). (а) Определить чётность перестановки. (И в (а), и в (б) количество действий порядка n.) (б) Не используя других массивов, заменить перестановку на обратную (если до работы программы a[i] = j, то после должно быть a[j] = i).

ВверхВниз   Решение


На гипотенузе BC прямоугольного треугольника ABC расположена точка D так, что AD BC . Найдите гипотенузу BC , если известно, что AD=DC-BD=h .

ВверхВниз   Решение


  Крестьянин, подойдя к развилке двух дорог, расходящихся под углом 60°, спросил: "Как пройти в село NN?" Ему ответили: "Иди по левой дороге до деревни N – это в 8 верстах отсюда, – там увидишь, что направо под прямым углом отходит большая ровная дорога – это как раз дорога в NN. А можешь идти другим путём: сейчас по правой дороге; как выйдешь к железной дороге, – значит, половину пути прошёл; тут поверни налево и иди прямо по шпалам до самого NN". – "Ну, а какой путь короче-то будет?" – "Да всё равно, что так, что этак, никакой разницы". И пошёл крестьянин по правой дороге.
  Сколько вёрст ему придётся идти до NN? Больше десяти или меньше? А если идти от развилки до NN напрямик? (Все дороги прямые.)

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]      



Задача 57529

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 5+
Классы: 8,9,10

Какую наименьшую ширину должна иметь бесконечная полоса бумаги, из которой можно вырезать любой треугольник площадью 1?
Прислать комментарий     Решение


Задача 116173

Темы:   [ Пересекающиеся окружности ]
[ Экстремальные свойства треугольника (прочее) ]
Сложность: 3+
Классы: 9,10,11

Две окружности пересекаются в точках P и Q. Tочка A лежит на первой окружности, но вне второй. Прямые AP и AQ пересекают вторую окружность в точках B и C соответственно. Укажите положение точки A, при котором треугольник ABC имеет наибольшую площадь.

Прислать комментарий     Решение

Задача 55238

Темы:   [ Вспомогательные подобные треугольники ]
[ Экстремальные свойства треугольника (прочее) ]
[ Неравенство Коши ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9

В треугольник с периметром 2p вписана окружность. К этой окружности проведена касательная, параллельная стороне треугольника. Найдите наибольшую возможную длину отрезка этой касательной, заключённого внутри треугольника.

Прислать комментарий     Решение

Задача 116995

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Экстремальные свойства треугольника (прочее) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Признаки подобия ]
[ Точка Торричелли ]
Сложность: 4-
Классы: 9,10,11

Автор: Фольклор

В треугольнике ABC угол B равен 60°. Точка D внутри треугольника такова, что  ∠ADB = ∠ADC = ∠BDC.
Найдите наименьшее значение площади треугольника ABC, если  BD = a.

Прислать комментарий     Решение

Задача 73552

Темы:   [ Против большей стороны лежит больший угол ]
[ Экстремальные свойства треугольника (прочее) ]
[ Теорема косинусов ]
[ Неравенство треугольника (прочее) ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 5-
Классы: 9,10

  Крестьянин, подойдя к развилке двух дорог, расходящихся под углом 60°, спросил: "Как пройти в село NN?" Ему ответили: "Иди по левой дороге до деревни N – это в 8 верстах отсюда, – там увидишь, что направо под прямым углом отходит большая ровная дорога – это как раз дорога в NN. А можешь идти другим путём: сейчас по правой дороге; как выйдешь к железной дороге, – значит, половину пути прошёл; тут поверни налево и иди прямо по шпалам до самого NN". – "Ну, а какой путь короче-то будет?" – "Да всё равно, что так, что этак, никакой разницы". И пошёл крестьянин по правой дороге.
  Сколько вёрст ему придётся идти до NN? Больше десяти или меньше? А если идти от развилки до NN напрямик? (Все дороги прямые.)
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .