ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Докажите, что площадь S треугольника равна abc/4R.

Вниз   Решение


Радиус сферы, касающейся всех рёбер правильного тетраэдра, равен 1. Найдите ребро тетраэдра.

ВверхВниз   Решение


Попробуйте составить квадрат из набора палочек: 6 шт. по 1 см, 3 шт. по 2 см, 6 шт. по 3 см и 5 шт. по 4 см. Ломать палочки и накладывать одну на другую нельзя.

ВверхВниз   Решение


Из произвольной внутренней точки O выпуклого n-угольника опущены перпендикуляры на стороны (или их продолжения). На каждом перпендикуляре от точки O по направлению к стороне построен вектор, длина которого равна половине длины той стороны, на которую опущен перпендикуляр. Определить сумму построенных векторов.

ВверхВниз   Решение


Расположите в порядке возрастания числа: 2222; 2222; 2222; 2222; 2222; 2222; 2222. Ответ обоснуйте.

ВверхВниз   Решение


Вычислите функции gk,l(x) при  0 ≤ k + l ≤ 4  и покажите, что все они являются многочленами.
Определение многочленов Гаусса gk,l(x) можно найти в справочнике.

ВверхВниз   Решение


Какое из двух чисел больше:

  а)     (n двоек) или   (n − 1  тройка);

  б)     (n троек) или     (n − 1  четвёрка).

ВверхВниз   Решение


Можно ли разбить все пространство на правильные тетраэдры и октаэдры?

ВверхВниз   Решение


Автор: Брагин В.

Дано натуральное число $n > 1$. Что больше: количество способов разрезать клетчатый квадрат $3n \times 3n$ на клетчатые прямоугольники $1 \times 3$ или количество способов разрезать клетчатый квадрат $2n \times 2n$ на клетчатые прямоугольники $1 \times 2$?

Вверх   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 121]      



Задача 65744

Темы:   [ Замощения костями домино и плитками ]
[ Полуинварианты ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9,10

Из клетчатого бумажного квадрата 100×100 вырезали по границам клеток 1950 доминошек (двуклеточных прямоугольников). Докажите, что из оставшейся части можно вырезать по границам клеток четырёхклеточную фигурку вида Т – возможно, повёрнутую. (Если такая фигурка уже есть среди оставшихся частей, считается, что её получилось вырезать.)

Прислать комментарий     Решение

Задача 66115

Темы:   [ Замощения костями домино и плитками ]
[ Примеры и контрпримеры. Конструкции ]
[ Малые шевеления ]
Сложность: 4
Классы: 7,8,9,10

Доминошки 1×2 кладут без наложений на шахматную доску 8×8. При этом доминошки могут вылезать за границу доски, но центр каждой доминошки должен лежать строго внутри доски (не на границе). Положите таким образом на доску
  а) хотя бы 40 доминошек;
  б) хотя бы 41 доминошку;
  в) более 41 доминошки.

Прислать комментарий     Решение

Задача 66491

Тема:   [ Замощения костями домино и плитками ]
Сложность: 4
Классы: 8,9,10,11

На доску $2018\times 2018$ клеток положили без наложений некоторое количество доминошек, каждая из которых закрывает ровно две клетки. Оказалось, что ни у каких двух доминошек нет общей целой стороны, т. е. никакие две не образуют ни квадрат $2\times 2$, ни прямоугольник $4\times 1$. Может ли при этом быть покрыто более 99% всех клеток доски?
Прислать комментарий     Решение


Задача 67011

Темы:   [ Замощения костями домино и плитками ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 8,9,10,11

Автор: Брагин В.

Дано натуральное число $n > 1$. Что больше: количество способов разрезать клетчатый квадрат $3n \times 3n$ на клетчатые прямоугольники $1 \times 3$ или количество способов разрезать клетчатый квадрат $2n \times 2n$ на клетчатые прямоугольники $1 \times 2$?
Прислать комментарий     Решение


Задача 67502

Темы:   [ Замощения костями домино и плитками ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 8,9,10,11

Прямоугольная клетчатая доска покрашена в шахматном порядке в чёрный и белый цвета и разбита на доминошки $1\times 2$. Везде, где граничат по стороне горизонтальная и вертикальная доминошки, стоит дверка. Она покрашена в тот же цвет, что и примыкающая клетка той доминошки, которая примыкает короткой стороной. Обязательно ли белых дверок столько же, сколько чёрных?
Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 121]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .