|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что площадь S треугольника равна abc/4R. Радиус сферы, касающейся всех рёбер правильного тетраэдра, равен 1. Найдите ребро тетраэдра. Попробуйте составить квадрат из набора палочек: 6 шт. по 1 см, 3 шт. по 2 см, 6 шт. по 3 см и 5 шт. по 4 см. Ломать палочки и накладывать одну на другую нельзя. Из произвольной внутренней точки O выпуклого n-угольника опущены перпендикуляры на стороны (или их продолжения). На каждом перпендикуляре от точки O по направлению к стороне построен вектор, длина которого равна половине длины той стороны, на которую опущен перпендикуляр. Определить сумму построенных векторов. Расположите в порядке возрастания числа: 2222; 2222; 2222; 2222; 2222; 2222; 2222. Ответ обоснуйте. Вычислите функции gk,l(x) при 0 ≤ k + l ≤ 4 и покажите, что все они являются многочленами. Какое из двух чисел больше: а) б) Можно ли разбить все пространство на правильные тетраэдры и октаэдры? Дано натуральное число $n > 1$. Что больше: количество способов разрезать клетчатый квадрат $3n \times 3n$ на клетчатые прямоугольники $1 \times 3$ или количество способов разрезать клетчатый квадрат $2n \times 2n$ на клетчатые прямоугольники $1 \times 2$? |
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 121]
Из клетчатого бумажного квадрата 100×100 вырезали по границам клеток 1950 доминошек (двуклеточных прямоугольников). Докажите, что из оставшейся части можно вырезать по границам клеток четырёхклеточную фигурку вида Т – возможно, повёрнутую. (Если такая фигурка уже есть среди оставшихся частей, считается, что её получилось вырезать.)
а) хотя бы 40 доминошек; б) хотя бы 41 доминошку; в) более 41 доминошки.
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 121] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|