ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Множество Кантора. Отрезок числовой оси от 0 до 1 покрашен в зеленый цвет. Затем его средняя часть — интервал (1/3;2/3) перекрашивается в красный цвет, потом средняя часть каждого из оставшихся зелеными отрезков тоже перекрашивается в красный цвет, с оставшимися зелеными отрезками проделывается та же операция и так до бесконечности. Точки, оставшиеся зелеными, образуют множество Кантора.
а) Найдите сумму длин красных интервалов.
б) Докажите, что число 1/4 останется окрашенным в зеленый цвет.
в) Из суммы

$\displaystyle {\textstyle\dfrac{2}{3}}$ + $\displaystyle {\textstyle\dfrac{2}{9}}$ + $\displaystyle {\textstyle\dfrac{2}{27}}$ + $\displaystyle {\textstyle\dfrac{2}{81}}$ +...

произвольным образом вычеркнуты слагаемые. Докажите, что сумма оставшихся слагаемых — зеленое число.

Вниз   Решение


Дан числовой набор x1, ..., xn. Рассмотрим функцию  .
  а) Верно ли, что функция d(t) принимает наименьшее значение в единственной точке, каков бы ни был набор чисел x1, ..., xn?
  б) Сравните значения d(c) и d(m), где  ,  а m – медиана указанного набора.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 67189

Темы:   [ Модуль числа (прочее) ]
[ Алгебраические уравнения и системы уравнений (прочее) ]
Сложность: 3
Классы: 9,10,11

Про четыре целых числа $a,b,c,d$ известно, что $$ a+b+c+d=ab+bc+cd+da+1. $$ Докажите, что модули каких-то двух из этих чисел отличаются на один.
Прислать комментарий     Решение


Задача 65303

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Модуль числа (прочее) ]
[ Математическая статистика ]
[ Средние величины ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10,11

Дан числовой набор x1, ..., xn. Рассмотрим функцию  .
  а) Верно ли, что функция d(t) принимает наименьшее значение в единственной точке, каков бы ни был набор чисел x1, ..., xn?
  б) Сравните значения d(c) и d(m), где  ,  а m – медиана указанного набора.

Прислать комментарий     Решение

Задача 108970

Темы:   [ Выделение полного квадрата. Суммы квадратов ]
[ Доказательство тождеств. Преобразования выражений ]
[ Модуль числа (прочее) ]
Сложность: 3
Классы: 8,9,10

Доказать, что выражение

+

равно 2, если 1<= a <= 2 , и равно 2 , если a>2 .
Прислать комментарий     Решение

Задача 110143

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Куб ]
[ Модуль числа (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

В вершинах кубика написали числа от 1 до 8, а на каждом ребре – модуль разности чисел, стоящих в его концах. Какое наименьшее количество различных чисел может быть написано на ребрах?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .