ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Найдите все трёхзначные числа, квадраты которых оканчиваются на 1001.

Вниз   Решение


Постройте равнобедренный треугольник, если заданы основания его биссектрис.

ВверхВниз   Решение


Сколькими способами можно разложить семь монет различного достоинства по трём карманам?

ВверхВниз   Решение


Шестиугольник ABCDEF – правильный, K и M – середины отрезков BD и EF. Докажите, что треугольник AMK – правильный.

ВверхВниз   Решение


  По случаю начала зимних каникул все мальчики из 8 "В" пошли в тир. Известно, что в 8 "В" n мальчиков. В тире, куда пришли ребята, n мишеней. Каждый из мальчиков случайным образом выбирает себе мишень, при этом некоторые ребята могли выбрать одну и ту же мишень. После этого все одновременно делают залп по своим мишеням. Известно, что каждый из мальчиков попал в свою мишень. Мишень считается поражённой, если в нее попал хоть один мальчик.
  а) Найти среднее количество поражённых мишеней.
  б) Может ли среднее количество поражённых мишеней быть меньше n/2?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 60873

 [Иррациональность чмсла e]
Темы:   [ Число e ]
[ Рациональные и иррациональные числа ]
[ Предел последовательности, сходимость ]
Сложность: 4
Классы: 10,11

Число e определяется равенством    Докажите, что

а)  

б)    где  0 < rn ≤ 1/n!n;

в)  e – иррациональное число.

Прислать комментарий     Решение

Задача 76475

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Число e ]
[ Произведения и факториалы ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 10,11

Что больше: 300! или 100300?

Прислать комментарий     Решение

Задача 61115

 [Формула Эйлера]
Темы:   [ Комплексная экспонента ]
[ Число e ]
[ Предел функции ]
Сложность: 4+
Классы: 10,11

Пусть a и b – действительные числа. Определим показательную функцию на множестве комплексных чисел равенством     Докажите формулу Эйлера:   ea+ib = ea(cos b + i sin b).

Прислать комментарий     Решение

Задача 60874

 [Число e и комбинаторика]
Темы:   [ Теория графов (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Число e ]
[ Раскраски ]
Сложность: 4
Классы: 9,10,11

Дано N точек, никакие три из которых не лежат на одной прямой. Каждые две из этих точек соединены отрезком, и каждый отрезок окрашен в один из k цветов. Докажите, что если  N > [k!e],  то среди данных точек можно выбрать такие три, что все стороны образованного ими треугольника будут окрашены в один цвет.


Прислать комментарий     Решение

Задача 65276

Темы:   [ Дискретное распределение ]
[ Алгебраические неравенства (прочее) ]
[ Число e ]
[ Предел последовательности, сходимость ]
[ Ограниченность, монотонность ]
Сложность: 4
Классы: 9,10,11

  По случаю начала зимних каникул все мальчики из 8 "В" пошли в тир. Известно, что в 8 "В" n мальчиков. В тире, куда пришли ребята, n мишеней. Каждый из мальчиков случайным образом выбирает себе мишень, при этом некоторые ребята могли выбрать одну и ту же мишень. После этого все одновременно делают залп по своим мишеням. Известно, что каждый из мальчиков попал в свою мишень. Мишень считается поражённой, если в нее попал хоть один мальчик.
  а) Найти среднее количество поражённых мишеней.
  б) Может ли среднее количество поражённых мишеней быть меньше n/2?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .