ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Дима придумал секретный шифр: каждая буква заменяется на слово длиной не больше 10 букв. Шифр называется хорошим, если всякое зашифрованное слово расшифровывается однозначно. Серёжа убедился (с помощью компьютера), что если зашифровать слово длиной не больше 10000 букв, то результат расшифровывается однозначно. Следует ли из этого, что шифр хороший? (В алфавите 33 буквы, под "словом" мы понимаем любую последовательность букв, независимо от того, имеет ли она смысл.)

Вниз   Решение


Легко проверить равенства

log$\displaystyle \left(\vphantom{16+\dfrac{16}{15}}\right.$16 + $\displaystyle {\textstyle\dfrac{16}{15}}$$\displaystyle \left.\vphantom{16+\dfrac{16}{15}}\right)$ = log 16 + log$\displaystyle {\textstyle\dfrac{16}{15}}$;     log$\displaystyle \left(\vphantom{\dfrac{64}7-8}\right.$$\displaystyle {\textstyle\dfrac{64}{7}}$ - 8$\displaystyle \left.\vphantom{\dfrac{64}7-8}\right)$ = log$\displaystyle {\textstyle\dfrac{64}{7}}$ - log 8.

В каких еще случаях можно выносить логарифм за скобку?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 22]      



Задача 61532

Тема:   [ Показательные функции и логарифмы (прочее) ]
Сложность: 3
Классы: 10,11

Легко проверить равенства

log$\displaystyle \left(\vphantom{16+\dfrac{16}{15}}\right.$16 + $\displaystyle {\textstyle\dfrac{16}{15}}$$\displaystyle \left.\vphantom{16+\dfrac{16}{15}}\right)$ = log 16 + log$\displaystyle {\textstyle\dfrac{16}{15}}$;     log$\displaystyle \left(\vphantom{\dfrac{64}7-8}\right.$$\displaystyle {\textstyle\dfrac{64}{7}}$ - 8$\displaystyle \left.\vphantom{\dfrac{64}7-8}\right)$ = log$\displaystyle {\textstyle\dfrac{64}{7}}$ - log 8.

В каких еще случаях можно выносить логарифм за скобку?
Прислать комментарий     Решение

Задача 66575

Темы:   [ Показательные функции и логарифмы (прочее) ]
[ Тригонометрия (прочее) ]
Сложность: 3
Классы: 9,10,11

Решите уравнение $$\tan\pi {}x = [\lg \pi^x]-[\lg [\pi^x]],$$ где $[a]$ обозначает наибольшее целое число, не превосходящее $a$.
Прислать комментарий     Решение


Задача 61533

Тема:   [ Показательные функции и логарифмы (прочее) ]
Сложность: 3
Классы: 9,10

При каких значениях a и b возможно равенство

sin a + sin b = sin(a + b)?


Прислать комментарий     Решение

Задача 65207

Темы:   [ Показательные функции и логарифмы (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Сумма нескольких не обязательно различных положительных чисел не превосходила 100. Каждое из них заменили на новое следующим образом: сначала прологарифмировали по основанию 10, затем округлили стандартным образом до ближайшего целого числа и, наконец, возвели 10 в найденную целую степень. Могло ли оказаться так, что сумма новых чисел превышает 300?

Прислать комментарий     Решение

Задача 61397

Тема:   [ Показательные функции и логарифмы (прочее) ]
Сложность: 3+
Классы: 9,10,11

Как расставить скобки в выражении 22...2, чтобы оно было максимальным?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .