|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Доказать, что никакую прямоугольную шахматную доску шириной в 4 клетки нельзя обойти ходом шахматного коня, побывав на каждом поле по одному разу и последним ходом вернувшись на исходную клетку. Крестьянин, покупая товары, уплатил первому купцу половину своих денег и ещё 1 рубль; потом уплатил второму купцу половину оставшихся денег да ещё 2 рубля и, наконец, уплатил третьему купцу половину оставшихся да ещё 1 рубль. После этого денег у крестьянина не осталось. Сколько рублей у него было первоначально? Доказать, что среди чисел [2k · Дана следующая треугольная таблица чисел: Доказать, что число, стоящее в самой нижней строчке, делится на 1958. Внутри вписанного четырёхугольника ABCD отмечены такие точки P и Q, что ∠PDC + ∠PCB = ∠PAB + ∠PBC = ∠QCD + ∠QDA = ∠QBA + ∠QAD = 90°. Найдите сумму Sl(x) = g0,l(x) – g1,l–1(x) + g2,l–2(x) – ... + (–1)lgl,0(x). |
Страница: 1 2 >> [Всего задач: 6]
Вычислите функции gk,l(x) при 0 ≤ k + l ≤ 4 и покажите, что все они являются многочленами.
Докажите следующие свойства функций gk,l(x)
(определения функций gk,l(x)
смотри здесь):
а) Определение (смотри в справочнике)
функций gk,l(x) не позволяет вычислять их значения при x = 1. Но, поскольку функции gk,l(x) являются многочленами, они определены и при x = 1. Докажите равенство б) Какие свойства биномиальных коэффициентов получаются, если в свойства б) – г) из задачи 61522 подставить значение x = 1?
Найдите сумму Sl(x) = g0,l(x) – g1,l–1(x) + g2,l–2(x) – ... + (–1)lgl,0(x).
Докажите, что при любых k и l многочлен
gk,l(x) является возвратным, то есть
Страница: 1 2 >> [Всего задач: 6] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|